Những câu hỏi liên quan
NH
Xem chi tiết
PL
30 tháng 6 2019 lúc 12:31

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(=ab\left(a-b\right)+\left(b^2c-ca^2\right)-\left(bc^2-c^2a\right)\)

\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)

\(=\left(a-b\right)\left[\left(ab-cb\right)-\left(ca-c^2\right)\right]\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 10 2018 lúc 9:09

-(bc^2-ac^2-b^2c-a^2c+ab^2-a^2b)

Bình luận (0)
HS
24 tháng 10 2018 lúc 9:56

Ta có : \(A=ab(a-b)+bc(b-c)+ca(c-a)\)

\(\Rightarrow A=ab(a-b)-bc(c-b)+ac(c-a)\)

\(\Rightarrow A=ab(a-b)-bc[(c-a)+(a-b)]+ac(c-a)\)

\(\Rightarrow A=ab(a-b)-bc(a-b)-bc(c-a)+ac(c-a)\)

\(\Rightarrow A=(a-b)(ab-bc)+(c-a)(ac-bc)\)

\(\Rightarrow A=b(a-b)(a-c)-(a-c)c(a-b)\)

\(\Rightarrow A=(a-c)(a-b)(b-c)\)

Chúc học tốt trong kì thi tới :>

Bình luận (0)
CD
Xem chi tiết
TA
10 tháng 7 2017 lúc 14:56

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(=ab\left(a-b\right)-\left(ca^2-b^2c\right)+\left(c^2a-bc^2\right)=ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)=\left(a-b\right)\left[\left(ab-ca\right)-\left(cb-c^2\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)
NL
Xem chi tiết
PT
6 tháng 11 2016 lúc 9:48

bc(b + c) + ca(c - a) - ab(a + b) = b2c + bc2 + c2a - ca2 - ab(a + b) = (b2c - a2c) + (bc2 + ac2) - ab(a + b)

= c(b - a)(b + a) + c2(b + a) - ab(a + b) = (a + b)[c(b - a) + c2 - ab] = (a + b)[(cb - ab) + (c2 - ca)]

= (a + b)[b(c - a) + c(c - a)] = (a + b)(b + c)(c - a)

Bình luận (0)
BB
Xem chi tiết
TT
10 tháng 12 2020 lúc 17:18

\(A=\left(a+b+c\right)\left(bc+ac+ab\right)-abc\)

\(=abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc-abc\)

\(\left(b^2c+bc^2\right)+\left(a^2c+a^2b\right)+\left(ac^2+abc\right)+\left(ab^2+abc\right)\)

\(=bc\left(b+c\right)+a^2\left(b+c\right)+ac\left(c+b\right)+ab\left(b+c\right)\)

\(=\left(b+c\right)\left(bc+a^2+ac+ab\right)\)

\(=\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Bình luận (0)
ND
Xem chi tiết
H24
31 tháng 7 2019 lúc 15:37

#)Giải :

a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)

\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)
NT
Xem chi tiết
HN
Xem chi tiết
TN
Xem chi tiết
LP
5 tháng 10 2023 lúc 20:48

\(C=c\left[b\left(a+d\right)\left(b-c\right)+a\left(b+d\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab+bd\right)\left(b-c\right)+\left(ab+ad\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab^2-abc+b^2d-bcd+abc-a^2b+acd-a^2d\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab^2-a^2b\right)+\left(b^2d-a^2d\right)+\left(acd-bcd\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab\left(b-a\right)+d\left(a+b\right)\left(b-a\right)+cd\left(a-b\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left(a-b\right)\left(-ab-da-db+cd\right)+ab\left(c+d\right)\left(a-b\right)\)

\(C=\left(a-b\right)\left(-abc-acd-bcd+c^2d+abc+abd\right)\)

\(C=\left(a-b\right)\left(-acd-bcd+abd+c^2d\right)\)

\(C=c\left(a-b\right)\left(c^2+ab-ac-bc\right)\)

\(C=c\left(a-b\right)\left[\left(c^2-ac\right)-\left(bc-ab\right)\right]\)

\(C=c\left(a-b\right)\left[c\left(c-a\right)-b\left(c-a\right)\right]\)

\(C=c\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

 

Bình luận (0)
DH
Xem chi tiết