tìm x,y thỏa mãn
a. \(\dfrac{3}{x}+\dfrac{x}{3}=\dfrac{5}{6}\)
giúp vs
Tìm \(x\) thỏa mãn:
\(\dfrac{4}{5}\)\(x\) - \(x\) - \(\dfrac{3}{2}\)\(x\) + \(\dfrac{4}{3}\) = \(\dfrac{1}{2}\) - \(\dfrac{6}{5}\)
\(\dfrac{4}{5}x-x-\dfrac{3}{2}x+\dfrac{4}{3}=\dfrac{1}{2}-\dfrac{6}{5}\\ \Rightarrow\left(\dfrac{4}{5}-1-\dfrac{3}{2}\right)x=-\dfrac{7}{10}-\dfrac{4}{3}\\ \Rightarrow-\dfrac{17}{10}x=\dfrac{-61}{30}\\ \Rightarrow x=\dfrac{61}{51}\)
\(\Leftrightarrow x\cdot\dfrac{-17}{10}=\dfrac{1}{2}-\dfrac{6}{5}-\dfrac{4}{3}=\dfrac{-61}{30}\)
hay x=61/51
Tìm x,y,z thỏa mãn:
\(\dfrac{x+2}{3}\)=\(\dfrac{y-5}{-4}\)=\(\dfrac{z+1}{5}\); 2x-3y+z=72 giúp tui với huhu
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\Rightarrow\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}=\dfrac{2x+4-3y+15+z+1}{6-\left(-12\right)+5}=\dfrac{\left(2x-3y+z\right)+\left(4+15+1\right)}{23}=\dfrac{72+20}{23}=\dfrac{92}{23}=4\)
\(\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\\ \dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\\ \dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2x-3y+z+4+15+1}{2\cdot3-3\cdot\left(-4\right)+5}=\dfrac{92}{23}=4\)
Do đó: x=10; y=-11; z=4
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\text{ và }2x-3y+z=72\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2\left(x+2\right)-3\left(y-5\right)+z+1}{2.3-3.\left(-4\right)+5}=\dfrac{92}{23}=4\)
\(\Rightarrow\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\)
\(\dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\)
\(\dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
Giá trị của x thỏa mãn
\(\dfrac{x+1}{65}\)+\(\dfrac{x+3}{63}\)=\(\dfrac{x+5}{61}\)+\(\dfrac{x+7}{59}\)
GIÚP MÌNH VS MÌNH ĐANG CẦN LẮM MN Ạ
Tìm các số x, y thỏa mãn \(\dfrac{x-y}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\).Tìm GTNN của
P=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
MN giúp e với ạ
Sao lúc thì $x,y,z$ lúc thì $a,b$ vậy bạn? Bạn coi lại đề.
Cho x,y là các số thực dương thỏa mãn : \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=\dfrac{5}{2}\)
Tính giá trị biểu thức : A=\(\dfrac{2x+3\sqrt{xy}}{2x-3\sqrt{xy}}\)
Giúp mình với !!!!!!!!
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)
Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)
\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)
\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)
Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)
\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)
\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))
Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)