\(2x=3y=5z\) và \(\left|x+y-z\right|=95\)
Tìm x,y,z, bt
a, \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\&x-3y+4z=62\)
b, \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\&2x+3y-5z=-21\)
c,\(\dfrac{x}{y}=\dfrac{3}{4},\dfrac{y}{z}=\dfrac{5}{7}\&2x+3y-z=186\)
d, \(2x=3y=5z\&\left|x+y-z\right|=95\)
a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)
=> x=8
3y=18=>y=6
4z=72=>z=18
Vậy x=8 ; y=6 ; z=18
b, Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)
Câu c bạn làm tương tự nhé!
d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)
\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)
Vậy...
tìm x,y,z :2x=3y=5z và x+y-z=95
có 2x=3y=5z
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x= 15.5=75, y= 10.5=50, z= 6.5= 30
vậy x=75, y = 50, z = 30
2x=3y=5z và x+y-z=95
\(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\Rightarrow x=75;y=50;z=30\)
Ta có: 2x=3y=5z
nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)
mà x+y-z=95
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{95}{\dfrac{19}{30}}=150\)
Do đó: x=75; y=50; z=30
2x = 3y = 5z và x + y –z = 95
\(2x=3y=5z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{95}{\dfrac{19}{30}}=150\)
\(\dfrac{x}{\dfrac{1}{2}}=30\Rightarrow x=15\\ \dfrac{y}{\dfrac{1}{3}}=30\Rightarrow y=10\\ \dfrac{z}{\dfrac{1}{5}}=150\Rightarrow z=30\)
2x=3y=5z và x+y- z = 95
Áp dụng tính chất dãy tỉ số bằng nhau:
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
Tìm x;y;z biết 2x=3y=5z và x+y+z=95
Từ 2x=3y=5z => x/15=y/10=z/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/15=y/10=z/6=x+y+z/15+10+6=95/19=5
=> x=5.15=75
y=5.10=50
z=5.6=30
kết quả đúng 100% ạ
Vì 2x=3y=5z=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
MÀ x+y+z=95 => Ta có :\(\frac{x+y+z}{15+10+6}=\frac{95}{31}\)
=> \(x=45\frac{30}{31};y=30\frac{20}{31};z=18\frac{12}{31}\)
Tìm x,y,z bít 2x=3y=5z và x+y+z-2 = 95
`Answer:`
\(2x=3y=5z;x+y+z-2=95\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30};x+y+z=97\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6};x+y+z=97\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{97}{31}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{97}{31}\Rightarrow x=\frac{1455}{31}\\\frac{y}{10}=\frac{97}{31}\Rightarrow y=\frac{970}{31}\\\frac{z}{6}=\frac{97}{31}\Rightarrow z=\frac{582}{31}\end{cases}}\)
Tìm x; y ; z biết 2x=3y=5z và x+y-z=95
Tìm x ; y ;z biết 2x=3y=5z và x+y-z=95