Những câu hỏi liên quan
PP
Xem chi tiết
TN
8 tháng 5 2018 lúc 17:16

Bài này đăng nhiều rồi bạn vào câu hỏi tương tự tìm

Bình luận (0)
PC
8 tháng 5 2018 lúc 22:12

Sử dụng kĩ thuật Cauchy ngược dấu

Ta có: \(\frac{a+1}{b^2+1}=\frac{ab^2+a+b^2+1-ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\) 

Tương tự \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\)

               \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\) 

\(\Rightarrow VT\ge3-\frac{a+b+c-ab-bc-ca}{2}\ge3\)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
DD
Xem chi tiết
H24
Xem chi tiết
NL
12 tháng 7 2020 lúc 18:22

Bài làm:

Áp dụng Cauchy dạng cộng mẫu ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\left(1\right)\)

\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c}\left(2\right)\)

\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\left(3\right)\)

Cộng vế 3 bất đẳng thức (1);(2); và (3) ta được:

\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi: \(a=b=c\)

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
VP
Xem chi tiết
TN
30 tháng 5 2018 lúc 18:52

sai đề ?

Bình luận (0)
VP
1 tháng 6 2018 lúc 19:45

đúng bạn ơi

Bình luận (0)
VP
1 tháng 6 2018 lúc 19:46

bé hơn hoặc bằng nhá các bạn

Bình luận (0)
PD
Xem chi tiết
KS
6 tháng 10 2019 lúc 16:35

 a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
NT
Xem chi tiết
D2
8 tháng 7 2019 lúc 8:12

https://olm.vn/hoi-dap/detail/223126660207.html?pos=512235459592

Giờ mình mới để ý , câu này có trong chuyên đề : Bất đẳng thức Cauchy (Cô si) của cô Nguyễn Linh Chi (ở phần dạng toán và hướng dẫn giải) (mình đã inbox link cho bạn rồi)

Còn đề bạn viết sai rồi nhé

Bình luận (0)
TD
Xem chi tiết
TT
5 tháng 2 2020 lúc 15:44

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

Bình luận (0)
 Khách vãng lai đã xóa
NM
5 tháng 2 2020 lúc 17:33

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NM
6 tháng 2 2020 lúc 18:24

2 )

Áp dụng bất đẳng thức Cacuchy - Schwarz :
\(VT=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\left(1\right)\)

Vì \(a+b+c=1\)nên 

\(a^2+b^2+c^2=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=\left(a^3++ab^2+b^3+bc^2+c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

Áp dụng AM - GM 

\(a^3+ab^2\ge2a^2b\). Tương tự cho 2 cặp còn lại suy ra 

\(a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TT
26 tháng 8 2015 lúc 20:31

Theo bất đẳng thức Cô-Si ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)

\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\)   (ĐPCM)

Bình luận (0)
WB
Xem chi tiết
HN
24 tháng 10 2016 lúc 11:31

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta được

\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge\frac{9}{2\left(a+2b\right)}\)

\(\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2c}\ge\frac{9}{2\left(b+2c\right)}\)

\(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế : 

\(\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{2}\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi a = b = c (a,b,c>0)

Bình luận (0)
H24
2 tháng 6 2018 lúc 8:22

The BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\). Thật vậy, ta có:

Áp dụng BĐT Bunhiacopxki, ta có:

\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{x+y+z}\). Thay a,b,c bởi 1 , ta được

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)

Áp dụng vào ta có: \(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\ge3.\frac{9}{3a+3b+3c}=3.\frac{9}{3\left(a+b+c\right)}=3.\frac{3}{a+b+c}\)

\(=\frac{9}{a+b+c}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{a+b+c}\)(2)

Vì (1) bằng (2) nên ta có đpcm . Dấu = xảy ra khi và chỉ khi a=b=c (a,b,c > 0)

Bình luận (0)
LC
27 tháng 11 2019 lúc 21:44

Hoàng Lê Bảo Ngọc

BĐt đầu tiên đó cần phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa