ND

Cho a+b+c=3.cm: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

PH
8 tháng 8 2018 lúc 19:24

a,b,c phải dương thì đề bài mới đúng.

Ta có: 

       \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge3.3\)(vì a+b+c=3)

\(\Leftrightarrow1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\ge9\)

\(\Leftrightarrow\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge6\)(1)

Mặt khác, \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)

Do đó bất đẳng thức (1) đúng mà các phép biến đổi trên là tương đương nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

Chúc bạn học tốt.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TD
Xem chi tiết
DT
Xem chi tiết
QT
Xem chi tiết
HT
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
PD
Xem chi tiết
DL
Xem chi tiết