Tìm x:
1) \(\left(4x-7\right)^2-5\times\left|7-4x\right|=0\)
Giải các PT:
a) \(\left(3x-2\right).\left(4x+5\right)=0\)
b) \(\left(2,3x-6,9\right).\left(0,1x+2\right)=0\)
c) \(\left(4x+2\right).\left(x^2+1\right)=0\)
d) \(\left(2x+7\right).\left(x-5\right).\left(5x+1\right)=0\)
Áp dụng công thức: \(A\left(x\right).B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=0\\B\left(x\right)=0\end{matrix}\right.\)
a) \(PT\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)
b) \(PT\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)
Vậy: \(S=\left\{3;20\right\}\)
c) Vì \(x^2+1\ge1>0\forall x\)
\(\Rightarrow4x+2=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
d) \(PT\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)
a: =>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: =>(x-3)(x+20)=0
=>x=3 hoặc x=-20
c: =>4x+2=0
hay x=-1/2
d: =>2x+7=0 hoặc x-5=0 hoặc 5x+1=0
=>x=-7/2 hoặc x=5 hoặc x=-1/5
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm x:
|5x-3|-3x=7
|x-3|+|x-5|-4x=-28
\(\left|x+2\right|+\left|x+\frac{3}{5}\right|+\left|x+\frac{1}{2}\right|=4x\)
\(\left|2x-1\right|+\left(4x^2-1\right)^2=0\)
|5x-3| - 3x = 7
*Nếu \(x\ge\frac{3}{5}\)
5x - 3 - 3x = 7
2x = 10
x = 5 ( tm)
*Nếu \(x< \frac{3}{5}\)
3 - 5x - 3x = 7
-8x = 4
x = \(-\frac{1}{2}\)( tm )
Làm hơi khó nhìn , thông cảm. Mệt rùi :)
|x - 3| + |x - 5| - 4x = -28
*Nếu x < 3
3 - x + 5 - x - 4x = -28
-6x = -36
x = 6 ( loại do ko tm khoảng đang xét )
* nếu 3 < x < 5
x - 3 + 5 - x - 4x = -28
-4x = -30
x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )
*Nếu x > 5
x - 3 + x - 5 - 4x = -28
-2x = -20
x = 10 ( tm)
Vậy x =10
|x + 2| + |x + 3/5| + |x+1/2| = 4x
Câu này cũng xét khoảng x < -2
-3/5 < x < -1/2
x > -1/2
|2x-1| + ( 4x2 - 1)2 = 0
Vì |2x - 1| > 0 với mọi x
( 4x2 - 1)2 > 0 với mọi x
=> |2x-1| + (4x2 - 1)2 > 0 với mọi x
Dấu "=" xảy ra <=> 2x - 1= 4x2 - 1 = 0
<=> x = 1/2
Đây gọi là phương pháp dùng bất đẳng thức
Tìm x:
1) \(\left(4x-7\right)^2-5\times\left|7-4x\right|=0\)
2) \(4^{x-2}+4^{x+1}=1040\)
1) (4x−7)2−5×|7−4x|=0
Có (4x-7)2 \(\ge0\) với mọi x
|7−4x| \(\ge0\) với mọi x
<=> 5|7−4x| \(\ge0\) với mọi x
Để (4x−7)2−5×|7−4x|=0 thì \(\left\{{}\begin{matrix}\left(4x-7\right)^2=0\\5|7-4x|=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}4x-7=0\\7-4x=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}4x=7\\4x=7\end{matrix}\right.\)<=>\(x=\dfrac{7}{4}\)
Vậy \(x=\dfrac{7}{4}\)
2) \(4^{x-2}+4^{x+1}=1040\)
<=> \(4^{x+1}.4^{-3}+4^{x+1}=1040\)
<=> \(4^{x+1}\left(4^{-3}+1\right)=1040\)
<=> \(4^{x+1}.\dfrac{65}{64}=1040\)
<=> \(4^{x+1}=1024=4^5\)
=> x+1=5 <=> x=4
Vậy x=4
Ghpt:
a) \(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{matrix}\right.\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm x biết
\(\left|2x-4\right|+\left|3y+12\right|+\left(2z-10\right)^{10}\le0\)
\(\left|x-3\right|+\left|2y-6\right|+\left(4x-3y\right)^2\le0\)
\(\left(x-7\right)\times\left(x+3\right)>0\)
\(\left(x-7\right)\times\left(x+3\right)\times\left(x-5\right)<0\)
Ghpt:\(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
GHPT: \(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
Giải hệ phương trình :(4.x^2 + 1).x + (y − 3) √5 − 2y = 04.x^2 + y^2 + 2.√3 − 4x = 7(x, y ∈ R) - Hoc24