Những câu hỏi liên quan
BB
Xem chi tiết
TH
15 tháng 1 2021 lúc 21:43

\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).

Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.

Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.

Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.

Vậy B khác 17 với mọi x nguyên.

Bình luận (0)
BB
Xem chi tiết
TT
15 tháng 1 2021 lúc 16:12

x đầu ở đa thức A là x^3 chăng?

a/ \(A=x^3-5x^2+8x-4\)

\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)

\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)

\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)

b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)

\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)

\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)

\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)

\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)

Bình luận (0)
NT
Xem chi tiết
NG
7 tháng 2 2017 lúc 20:02

ta có\(\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}=\frac{x^5-5x^3+4x}{30}\)

ta có A=x^5-5x^3+4x=x(x^4-5x^2+4)

=x[x^4-4x^2+4-x^2]

=x[ (x^2-2)^2-x^2 ]

=x[ (x^2-2-x)(x^2-2+x)]

=x(x-2)(x+1)(x-1)(x+2)

do A là tích của 5 số nguyên liên tiếp nên chi hết cho 5

do A chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3

do A chứa tích của 2 số nguyên liên tiếp nên chia hết cho 2

mà (2,3,5) Nguyên tố vs nhau từng đôi 1 nên A\(⋮\)2.3.5 <=> A chia hết cho 30 vậy M=A/30 luôn là số nguyên vs mọi x thuộc Z

Bình luận (0)
LH
Xem chi tiết
LH
Xem chi tiết
NK
28 tháng 11 2015 lúc 22:09

Ta có

\(A=x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)\(=\left(x^2-4x+4\right)\left(x-1\right)=\left(x-2\right)^2\left(x-1\right)\)

Bình luận (0)
NT
Xem chi tiết
ON
Xem chi tiết
LH
1 tháng 10 2016 lúc 19:48

\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)

\(=\frac{x^5}{30}-\frac{5x^3}{30}+\frac{4x}{30}\)

\(=\frac{x^5-5x^3+4x}{30}\)

\(=\frac{x\left(x^4-5x^2+4\right)}{30}\)

\(=\frac{x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]}{30}\)

\(=\frac{x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]}{30}\)

\(=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)

\(=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\)

\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nguyên liên tiếp nên chia hết cho 2 , 3 , 5.

Mà các số 2 , 3 , 5 nguyên tố với nhau từng đôi một nên \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 . 3 .5 = 30

Do đó \(M\in Z\)

Vậy....

Bình luận (0)
LL
Xem chi tiết
KT
14 tháng 7 2018 lúc 21:27

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

Bình luận (0)
LL
14 tháng 7 2018 lúc 21:55

Đề câu d đúng mà!

Bình luận (0)
TV
Xem chi tiết