tim số nguyên x,ybiet
5/x - y/3=1/6
tim x,ybiet:
(x+y).(x+1)=3
tim x,ybiet
a) x/4=25/x
b)y^2/3=12/1
a) Ta có: \(\frac{x}{4}=\frac{25}{x}\Rightarrow x.x=25.4\Rightarrow x^2=100\Rightarrow x=\pm10\)
Vậy x = {10;-10}
b) \(\frac{y^2}{3}=\frac{12}{1}\Rightarrow y^2=12.3\Rightarrow y^2=36\Rightarrow y=\pm6\)
Vậy x = {6;-6}
\(\frac{x}{4}=\frac{25}{x}\)
\(\Leftrightarrow\)\(x\times x=25\times4\)
\(\Leftrightarrow\)\(x\times x=100=10\times10\)
\(\Leftrightarrow\)\(x=10\)
P/s: vì tiểu hok chưa học số nguyên âm nên chỉ có x = 10 thôi nhé
a) Ta có :
\(\frac{x}{4}=\frac{25}{x}\)
\(\Leftrightarrow\)\(x.x=4.25\)
\(\Leftrightarrow\)\(x^2=100\)
\(\Leftrightarrow\)\(x=\sqrt{100}\)
\(\Leftrightarrow\)\(x=10\)
b) Ta có :
\(\frac{y^2}{3}=\frac{12}{1}\)
\(\Leftrightarrow\)\(y^2=12.3\)
\(\Leftrightarrow\)\(y^2=36\)
\(\Leftrightarrow\)\(y=\sqrt{36}\)
\(\Leftrightarrow\)\(y=6\)
tim x+y/x-ybiet x/y=0
\(\frac{x}{y}\)=0=>x=0=>\(\frac{x+y}{x-y}\)=\(\frac{y}{-y}\)=-1
Tim x,ybiet 3/5x=2/3y va x^2-y^2=38
Tim x,ybiet x,y ti le voi 2;3 va x^2=-19+y^2+xy
Đặt x/2=y/3=k
=>x=2k; y=3k
\(x^2=-19+y^2+xy\)
\(\Leftrightarrow4k^2=-19+9k^2+6k^2\)
\(\Leftrightarrow k^2=\dfrac{19}{11}\)
Trường hợp 1: \(k=\sqrt{\dfrac{19}{11}}\)
=>\(x=2\sqrt{\dfrac{19}{11}};y=\dfrac{3\sqrt{19}}{11}\)
Trường hợp 2: \(k=-\sqrt{\dfrac{19}{11}}\)
=>\(x=-2\sqrt{\dfrac{19}{11}};y=-\dfrac{3\sqrt{19}}{11}\)
tim cac so nguyen x ybiet
|x-2|+|x.y-6|=0
Với mọi x, y ta có :
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|xy-6\right|\ge0\end{cases}}\)
Lại có : \(\left|x-2\right|+\left|xy-6\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|xy-6\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\xy-6=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy ...
Ta có :
\(\left|x-2\right|\ge0\forall x;\left|x.y-6\right|\ge0\forall x;y\)
\(\Rightarrow\left|x-2\right|+\left|x.y-6\right|\ge0\forall x;y\)
Dấu \("="\Leftrightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|x.y-6\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\x.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Vậy \(\left|x-2\right|+\left|x.y-6\right|=0\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
~ Ủng hộ nhé
Ta có:
\(|x-2|\ge0\) với mọi x
\(|x.y-6|\) với mọi x,y
\(\Rightarrow\)\(|x-2|+|x.y-6|\ge0\) với mọi x,y
Dấu''="xảy ra khi:\(\hept{\begin{cases}|x-2|=0\\|x.y-6|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2=0\\x.y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0+2\\x.y=0+6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\x.y=6\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\2.y=6\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=6:2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Vậy \(x=2;y=3\)
tìmx,ybiet: x+y=x:y=3(x-y)
tìm x,ybiet :-/2x+4/-/y+5/bé hơn hoặc bằng 0
tim các số nguyên x,y: x/6=2/y=1/2
\(\frac{x}{6}=\frac{2}{y}=\frac{1}{2}\)
Ta có: \(\frac{x}{6}=\frac{1}{2}\) => \(x=\frac{1}{2}.6\)
=> \(x=3\)
\(\frac{2}{y}=\frac{1}{2}\) => \(y=2:\frac{1}{2}\)
=> \(y=4\)
Vậy ...
#)Giải :
Ta có : \(\frac{x}{6}=\frac{2}{y}\Rightarrow xy=6.2=12\)
\(\Rightarrow\left(x,y\right)\in\left\{\left(2,6\right);\left(3;4\right)\left(1;12\right)\right\}\)
Nhưng vì điều kiện cho bằng \(\frac{1}{2}\)
\(\Rightarrow\left(x,y\right)\in\left\{3,4\right\}\)
\(\Rightarrow x=3;y=4\)
\(\frac{x}{6}=\frac{2}{y}=\frac{1}{2}\)
Ta có : \(\frac{x}{6}=\frac{1}{2}\)
=>\(x.2=6.1\)
\(x.2=6\)
\(x=3\)
Ta có :\(\frac{2}{y}=\frac{1}{2}\)
\(2.2=y.1\)
\(4=y.1\)
\(=>y.1=4\)
\(y=4\)
hc tốt