Cho a/b=b/c=c/d và b+c+d khác 0
CMR: (a+b+c/b+c+d)3 = a/d
cho a/b = c/d khác 1 , abcd khác 0
CMR a/a-b = c/c-d
Đặt a/b = b/c=k
=> a=bk;b=ck (1)
Từ (1) => a/a-b= bk/bk-b=bk/b(k-1)=k/k-1 (2)
Từ (1) => c/c-d= dk/dk-d=dk/d(k-1) = k/k-1 (3)
Từ (2) và (3)=> a/a-b = c/c-d
Cho mình 5 sao nha
cho a/b=c/d.với a khác 0,b khác 0,c khác 0,d khác 0
cmr 2a+b/3a-5b=2c+d/3c-5d
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+b}{3a-5b}=\dfrac{2\cdot bk+b}{3\cdot bk-5b}=\dfrac{2k+1}{3k-5}\)
\(\dfrac{2c+d}{3c-5d}=\dfrac{2dk+d}{3dk-5d}=\dfrac{2k+1}{3k-5}\)
Do đó: \(\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\)
Cách khác:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+b}{2c+d}\\\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-5b}{3c-5d}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{3a-5b}{3c-5d}\Rightarrow\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\left(đpcm\right)\)
cho a+b/c+d=a-2b/c-2d với bd khác 0cmr a/b=c/d
Cho a,b,c,d,e >0CMR:
\(a+b+c+d+e\ge\sqrt{a}\left(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(\frac{a}{4}+b\geq 2\sqrt{\frac{ab}{4}}=\sqrt{ab}\)
\(\frac{a}{4}+c\geq 2\sqrt{\frac{ac}{4}}=\sqrt{ac}\)
\(\frac{a}{4}+d\geq 2\sqrt{\frac{ad}{4}}=\sqrt{ad}\)
\(\frac{a}{4}+e\geq 2\sqrt{\frac{ae}{4}}=\sqrt{ae}\)
Cộng theo vế:
\(\Rightarrow a+b+c+d+e\geq \sqrt{ab}+\sqrt{ac}+\sqrt{ad}+\sqrt{ae}\)
\(\Leftrightarrow a+b+c+d+e\geq \sqrt{a}(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e})\)
Ta có đpcm.
Dấu bằng xảy ra khi \(\frac{a}{4}=b=c=d=e\)
Cho a+b+c+d=0
CMR: a3+b3+c3+d3=3(c+d)(ab+cd)
Giúp mik nhá mọi người
Ta có : \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-c-d\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c-d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3-d^3+3cd.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3cd.\left(c+d\right)-3ab.\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.cd.\left(a+b\right)+3ab.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.\left(c+d\right)\left(cd+ab\right)\)
Ta có : a+b+c+d=0
⇔a+b=−c−d
⇔(a+b)3=(−c−d)3
⇔a3+b3+3ab.(a+b)=−c3−d3+3cd.(c+d)
⇔a3+b3+c3+d3=3cd.(c+d)−3ab.(a+b)
⇔a3+b3+c3+d3=3.cd.(a+b)+3ab.(c+d)
⇔a3+b3+c3+d3=3.(c+d)(cd+ab)
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
Cho a/b=c/d khác +-1 và c khác 0
CMR:a,(a-b/c-d)^2=a.d/c.d;
b,(a+b/c+d)^3=a^3-b^3=c^3-d^3
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3
Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
giúp ;-;
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cách 1:
Ta xét tích a(c-d) và c(a-b)
Ta có: a(c-d)=ac-ad (1)
c(a-b)=ac-bc(2)
Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)
Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 2:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk.
Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 3: Ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Aps dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)
=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)