x^4 - 13x^2 + 18x - 5 = 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải pt:
a, \(2x^2-6x-1=\sqrt{4x+5}\)
b, \(18x^2+6x-29=\sqrt{12x+61}\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{61}{12}\)
\(\Leftrightarrow36x^2+12x-58-2\sqrt{12x+61}=0\)
\(\Leftrightarrow\left(36x^2+24x+4\right)-\left(12x+61+2\sqrt{12x+61}+1\right)=0\)
\(\Leftrightarrow\left(6x+2\right)^2-\left(\sqrt{12x+61}+1\right)^2=0\)
\(\Leftrightarrow\left(6x+1-\sqrt{12x+61}\right)\left(6x+3+\sqrt{12x+61}\right)=0\)
\(\Leftrightarrow...\) tương tự câu a
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Toán lớp 10 ahihi :
Giải các phương trình sau :
a. x^3 + 9x^2 + 27x - 1 = 0
b. 59x^3 + 54x^2+ 18x + 2 = 0
c. x^4 = 3x^2 + 10x + 4
d. x^4 - x^3 - 12x^2 + 13x + 5 = 0
Ai làm dc giúp mình với gấp lắm. Tks nhiều.
Giải PT sau
3x^4-18x^3+16x^2-13x+3=0
Bài:Chia 1 biến đã sắp xếp 1)(2x^3+11x^2+18x-3):(2x+3) 2)(2x^3+11x^2+18x-3):(3x+3) 3)(2x^3+9x^2+5x+41):(2x^2-x+9) 4)(13x+41x^2+35x^3-14):(5x-2) 5)(5x^2-3x^3+15-9x):(5-3x) 6)(-4x^2+x^3-20+5x):(x-4)
1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)
\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)
\(=x^2+4x+3-\dfrac{12}{2x+3}\)
Chứng minh bất đẳng thức sau: 6x4 - 18x3 + 23x2 - 13x + 4 > 0
Bài này đơn giản thôi.
Đặt f(x) = 6x4 - 18x3 + 23x2 - 13x + 4 > 0
\(f\left(x\right)=\frac{47}{54}+\frac{1}{54}\left(18x^2-27x+13\right)^2+\frac{5}{6}x^2\)
Thao tác trên Maple (vào thống kê hỏi đáp xem ảnh)
Còn cách phân tích bằng tay thì qua VMF có bài viết của mình nói về điều này nhé.
phân tích đa thức thành nhân tử:
x^5-7x^4-x^3+43x^2-36
x^5-4x^4-13x^3+52x^2+36x-144
x^4+2x^3-15x^2-18x+64
x^3-x^2-4
x^3-3x^2-4x+12
mk ghi kết quả thôi nhé, nếu từ kết quả mak k biết biến đổi thì ib cho mk
\(x^5-7x^4-x^3+43x^2-36=\left(x-6\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
câu thứ 2 bạn ktra lại đề
\(x^4+2x^3-15x^2-18x+64=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)
\(x^3-x^2-4=\left(x-2\right)\left(x^2+x+2\right)\)
\(x^3-3x^2-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
a) \(x^5-7x^4-x^3+43x^2-36\)
\(=x^3\left(x^2-1\right)-7x^2\left(x^2-1\right)+36\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^3-7x^2+36\right)=\left(x-1\right)\left(x+1\right)\left(x^3+2x^2-9x^2-18x+18x+36\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^9-9x+18\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x-6\right)\)
c) \(x^4+2x^3-15x^2-18x+64\)
\(=x^3\left(x-2\right)+4x^2\left(x-2\right)-7x\left(x-2\right)-32\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)
d) \(x^3-x^2-4=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
e) \(x^3-3x^2-4x+12=x\left(x^2-4\right)-3\left(x^2-4\right)\)
\(=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
tìm x,y biết:
13x2+y2+4x-6xy-8y+41=0
18x2+4y2+12xy+24x-4y+26=0
Tìm x
(x – 2) . (y + 1) = 23
( – 9) . ( – 36) = 0
– 15x – 18x + 13x = – 4600
a) Ta có: (x-2)(y+1)=23
⇔x-2;y+1∈Ư(23)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=1\\y+1=23\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-1\\y+1=-23\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=23\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-23\\y+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=22\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-24\end{matrix}\right.\\\left\{{}\begin{matrix}x=25\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-21\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy: (x,y)∈{(3;22);(1;-24);(25;0);(-21;-2)}
c) Ta có: \(-15x-18x+13x=-4600\)
\(\Leftrightarrow-20x=-4600\)
hay x=230
Vậy: x=230
tìm x,y biết:
13x2+y2+4x-6xy-8y+41=0
18x2+4y2+12xy+24x-4y+26=0