Những câu hỏi liên quan
LH
Xem chi tiết
HT
5 tháng 2 2021 lúc 15:15

undefined

Bình luận (0)
LH
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Bình luận (0)
NC
Xem chi tiết
ST
31 tháng 7 2018 lúc 9:41

Đặt x2-2x+1=t, ta có:

\(A=\left(t-1\right)\left(t+1\right)=t^2-1=\left(x^2-2x+1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Bình luận (0)
KB
31 tháng 7 2018 lúc 15:08

Đặt \(\left(x^2-2x\right)\left(x^2-2x=2\right)=k.\left(k+2\right)=A\)

\(\Rightarrow A=k.\left(k+2\right)=k^2+2k\)

\(\Rightarrow A=k^2+k+k+1-1=k\left(k+1\right)+\left(k+1\right)-1\)

\(\Rightarrow A=\left(k+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-2x+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-x-x+1\right)^2-1=\left[x.\left(x-1\right)-\left(x-1\right)\right]^2-1\)

\(\Rightarrow A=\left(x-1\right)^2-1\ge-1\)

( Dấu "=" xảy ra <=> x=1 )

Bình luận (0)
BP
Xem chi tiết
EG
Xem chi tiết
NT
25 tháng 12 2020 lúc 16:05

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

Bình luận (0)
 Khách vãng lai đã xóa
KD
Xem chi tiết
TC
27 tháng 8 2017 lúc 16:01

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

Bình luận (0)
NT
Xem chi tiết
AL
14 tháng 3 2020 lúc 20:14

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

Bình luận (0)
 Khách vãng lai đã xóa
KS
Xem chi tiết
NM
8 tháng 5 2018 lúc 15:17

\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x\right)^2-1+2017\)

\(=\left(2x^2-3x\right)^2+2016\ge2016\)

\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Bình luận (0)
NM
8 tháng 5 2018 lúc 15:21

ai thấy mình làm đúng thì k cho mình nha!

Bình luận (0)
NH
8 tháng 5 2018 lúc 15:21

A=\(\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

ĐẶT \(2x^2-3x=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)+2017\)

\(\Leftrightarrow t^2-1+2017\)

\(\Leftrightarrow t^2+2016\ge2016\left(do.t^2\ge0\right)\)

DẤU ''='' XẢY RA KHI VÀ CHỈ KHI \(t^2=0\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=0\end{cases}}\)

VẬY GTNN CỦA A LÀ 2016 TẠI X=0 HOẶC X=3/2

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 10 2023 lúc 13:03

a: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7>=-7\)

Dấu = xảy ra khi x=2

b: \(B=\left(x-3\right)^2+\left(x-1\right)^2\)

\(=x^2-6x+9+x^2-2x+1\)

\(=2x^2-8x+10\)

\(=2x^2-8x+8+2\)

\(=2\left(x-2\right)^2+2>=2\)

Dấu = xảy ra khi x=2

Bình luận (0)
LL
Xem chi tiết
GD

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (0)
GD

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

Bình luận (0)
TB
Xem chi tiết
NL
13 tháng 8 2021 lúc 0:27

\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)

\(C_{min}=4\) 

Bình luận (0)