phân tích đa thức sau thành nhân tử
-2x^4-7x^3-x^2+7x+3
Phân tích đa thức thành nhân tử dạng đoán nghiệm
a,-3x^4+20x^3-35x^2-10x+48
b,-2x^4-7x^3-x^2+7x+3
x^5-5x^4-2x^3+17x^2-13x+2
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
phân tích đa thức thành nhân tử
\(a) x^4-7x^2+6\)
\(b) x^4+2x^2-3\)
\(c) x^3-2x^2+5x-4\)
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
Phân tích đa thức thành nhân tử
1)-3x^4+20x^3-35x^2-10x+48
2)-2x^4-7x^3-x^2+7x+3
1) =\(-3x^4+9x^3+11x^3-33x^2-2x^2+6x-16x+48\)
=\(-3x^3\left(x-3\right)+11x^2\left(x-3\right)-2x\left(x-3\right)-16\left(x-3\right)\)
= \(\left(x-3\right)\left(-3x^3+11x^2-2x-16\right)\)
= \(\left(x-3\right)\left(-3x^3+6x^2+5x^2-10x+8x-16\right)\)
=\(\left(x-3\right)\left(-3x^2\left(x-2\right)+5x\left(x-2\right)+8\left(x-2\right)\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(-3x^2+5x+8\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(x-\frac{8}{3}\right)\left(x+1\right)\)
Ý b lm theo ý tưởng tương tự nha bn :D
phân tích đa thức thành nhân tử: 2x^4+7x^3-2x^2-13+6
\(2x^4+7x^3-2x^2-13x+6\)
\(=2x^4+6x^3+x^3+3x^2-5x^2-15x+2x+6\)
\(=2x^3\left(x+3\right)+x^2\left(x+3\right)-5x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(2x^3+x^2-5x+2\right)\left(x+3\right)\)
\(=\left(2x^3+4x^2-3x^2-6x+x+2\right)\left(x+3\right)\)
\(=\left[2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]\left(x+3\right)\)
\(=\left(2x^2-3x+1\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(2x^2-2x-x+1\right)\left(x+2\right)\left(x+3\right)\)
\(=\left[2x\left(x-1\right)-\left(x-1\right)\right]\left(x+2\right)\left(x+3\right)\)
\(=\left(2x-1\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)\)
phân tích đa thức thành nhân tử:
-2x^5-6x^4-8x^3-x^2+7x+10
phân tích đa thức thành nhân tử
a, 6x^3+5x^2-7x-4
b, 2x^3-x^2+x-2
6x3 + 5x2 - 7x - 4
= (6x3 + 5x - 7x) - 4
= x (6x2 - 5 - 7) - 22
= x (6x2 - 12) - 22
= x [6 (x2 - 2)] - 22
= x [6 (x2 - \(\sqrt{2}^2\))] - 22
= x [6 (x +\(\sqrt{2}\)) (x -\(\sqrt{2}\))] - 22
= (x - 22) [6 (x +\(\sqrt{2}\)) (x -\(\sqrt{2}\))
b) 2x3 - x2 + x - 2
= (2x3 - x2 - x) - 2
= x (2x2 - x - 1) - 2
= (x - 2) (2x2 - x - 1)
(mik ko biet dug ko, neu sai mog bn thog cam)
Phân tích đa thức sau thành nhân tử
a) x^3 + 4x^2 + 5x + 6
b) x^3 - 3x^2 - 4x + 12
c) 3x^3 - 7x^2 + 17x - 5
d) 2x^4 + 7x^3 - 2x^2 - 13x + 6
\(b,x^3-3x^2-4x+12\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-4\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(c,3x^3-7x^2+17x-5\)
\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)
\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)
\(\text{d) 2x}^4- 7x^3 - 2x^2 + 13x + 6\)
\(\text{= (2x^4 + 2x^3) - (9x^3 + 9x^2) + (7x^2 + 7x) + (6x + 6)}\)
\(\text{= 2x^3(x + 1) - 9x^2(x + 1) + 7x(x + 1) + 6(x + 1)}\)
\(\text{= (x + 1)(2x^3 - 9x^2 + 7x + 6)}\)
\(\text{= (x + 1)(2x + 1)(x - 3)(x - 2)}\)
phần b,c thay ''<=>'' là ''='' nhé ! Mình nhầm!
phân tích đa thức thành nhân tử:3x^4+11x^3-7x^2-2x +1
\(3x^4+11x^3-7x^2-2x+1=\left(3x^4+12x^3-3x^2-3x\right)+\left(-x^3-4x^2+x+1\right)\)
\(=\left(3x-1\right)\left(x^3+4x^2-x-1\right)\)
phân tích đa thức thành nhân tử: 2x^4 + 3x^3 - 12x^2 - 7x + 6
\(=2x^4+6x^3-3x^3-9x^2-3x^2-9x+2x+6\)
\(=2x^3\left(x+3\right)-3x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(2x^3-4x^2+x^2-2x-x+2\right)=\left(x+3\right)\left(x-2\right)\left(2x^2+x-1\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(2x^2+2x-x-1\right)=\left(x+3\right)\left(x-2\right)\left(x+1\right)\left(2x-1\right)\)
2x^4+3x^3-12x^2-7x+6 = (2x^4-x^3)+(4x^3-2x^2)-(10x^2-5x)-(12x-6)
= x^3.(2x-1)+2x^2.(2x-1)-5x.(2x-1)-6.(2x-1) = (2x-1).(x^3+2x^2-5x-6)
= (2x-1).[ (x^3+x^2)+(x^2+x)-(6x+6) ] = (2x-1).(x+1).(x^2+x-6) = (2x-1).(x-1).[(x^2-2x)+(3x-6)]
= (2x-1).(x+1).(x-2).(x+3)
k mk nha
\(2x^4+3x^3-12x^2-7x+6\)
\(=\left(2x^4+2x^3\right)+\left(x^3+x^2\right)-\left(13x^2+13x\right)+\left(6x+6\right)\)
\(=\left(x+1\right)\left(2x^3+x^2-13x+6\right)\)