Những câu hỏi liên quan
TD
Xem chi tiết
ZZ
22 tháng 5 2019 lúc 18:59

Với  \(n=0\) thì bài toán trở thành:

\(\frac{1}{a+b-c}+\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(H\right)\)

Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có:\(\frac{1}{a+b-c}+\frac{1}{a-b+c}\ge\frac{4}{a+b-c+a-b+c}=\frac{2}{a}\left(1\right)\)

Chứng minh tương tự,ta có:

\(\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{2}{b}\left(2\right)\)

\(\frac{1}{-a+b+c}+\frac{1}{a+b-c}\ge\frac{2}{c}\left(3\right)\)

Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow H\left(true\right)\)

Với \(n=1\) thì bài toán trở thành:

\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}\ge3\left(U\right)\)

Đặt \(-a+b+c=x;a-b+c=y;a+b-c=z\)

\(\Rightarrow a-b+c+a+b-c=y+z\)

\(\Rightarrow2a=y+z\)

\(\Rightarrow a=\frac{y+z}{2}\)

Tương tự,ta có:\(b=\frac{x+z}{2};c=\frac{x+y}{2}\)

Khi đó,ta có:\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}=\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{z+x}{2y}\)

\(=\frac{1}{2}\left[\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)\right]\)( Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge2\))

\(\ge\frac{1}{2}\left(2+2+2\right)\)

\(=3\left(4\right)\)

Từ \(\left(4\right)\Rightarrow U\left(true\right)\)

Với  \(n=2\) thì ta có:

\(\left(a^{n-2}-b^{n-2}\right)\left(a-b\right)\ge0\)

\(\Rightarrow a^{n-1}+b^{n-1}\ge b^{n-2}a+a^{n-2}b\left(5\right)\)

Tương tự,ta có:

\(b^{n-1}+c^{n-1}\ge b^{n-2}c+c^{n-2}b\left(6\right)\)

\(c^{n-1}+a^{n-1}\ge c^{n-2}a+a^{n-2}c\left(7\right)\)

Áp dụng BĐT AM-GM cho 2 số không âm,ta có:

\(\frac{a^n}{-a+b+c}+\left(-a+b+c\right)\cdot a^{n-2}\ge2\sqrt{\frac{a^n}{-a+b+c}\cdot\left(-a+b+c\right)\cdot a^{n-2}}\)

\(\Rightarrow\frac{a^n}{-a+b+c}-a^{n-1}+a^{n-2}b+a^{n-2}c\ge2\cdot a^{n-1}\)

\(\Rightarrow\frac{a^n}{-a+b+c}+a^{n-2}b+a^{n-2}c\ge3a^{n-1}\left(8\right)\)

Tương tự ta có:

\(\frac{b^n}{a-b+c}+ab^{n-2}+cb^{n-2}\ge3b^{n-1}\left(9\right)\)

\(\frac{c^n}{a+b-c}+ac^{n-2}+bc^{n-2}\ge3c^{n-1}\left(10\right)\) 

Cộng vế theo vế của \(\left(5\right);\left(6\right);\left(7\right);\left(8\right);\left(9\right);\left(10\right)\RightarrowĐPCM\)

P/S:Bài dài nên e không biết có đúng ko nữa:3

Bình luận (0)
H24
23 tháng 5 2019 lúc 8:48

Sau đây là lời giải siêu xàm của em!

Với n = 0 thì ta cần chứng minh \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (1)

Đặt \(\hept{\begin{cases}a+b-c=x\\b+c-a=y\\c+a-b=z\end{cases}}\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)

BĐT (1) trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

Thật vậy,áp dụng BĐT quen thuộc \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\),ta có: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{x+z}\)

Cộng theo vế ta được: \(2VT_{\left(1\right)}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)

\(\Rightarrow VT_{\left(1\right)}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

Vậy BĐT (1) đúng. (*)

Giả sử điều đó đúng với n = k (\(k\inℕ^∗\)) tức là ta có: \(\frac{a^k}{b+c-a}+\frac{b^k}{c+a-b}+\frac{c^k}{a+b-c}\ge a^{k-1}+b^{k-1}+c^{k-1}\)    (2)

Ta đi chứng minh điều đó đúng với n = k  + 1 (\(k\inℕ^∗\)). Tức là c/m:

\(\frac{a^{k+1}}{b+c-a}+\frac{b^{k+1}}{c+a-b}+\frac{c^{k+1}}{a+b-c}\ge a^k+b^k+c^k\) (3)

Thật vậy (3) \(\Leftrightarrow\frac{a^k}{b+c-a}.a+\frac{b^k}{c+a-b}.b+\frac{c^k}{a+b-c}.c\ge a^{k-1}.a+b^{k-1}.b+c^{k-1}.c\)

Và bí!:D

Bình luận (0)
ZZ
23 tháng 5 2019 lúc 11:32

Sửa lại trường hợp 2 một tí=))

\(\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{z+x}{2y}\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\right]\)(Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\))

\(\ge\frac{1}{2}\left(2+2+2\right)\)

\(=3\)

Bình luận (0)
TT
Xem chi tiết
CT
Xem chi tiết
NT
15 tháng 3 2016 lúc 21:33

mình cm cuối cùng ra 1/2(a+b-c)((a-b)^2+(a+c)^2+(b+c)^2)>0(vìa,b,c là ba cạnh của tam giác)

Bình luận (0)
HT
Xem chi tiết
NL
21 tháng 8 2021 lúc 12:05

\(p+q=1\Rightarrow q=1-p\)

BĐT cần c/m trở thành:

\(pa^2+\left(1-p\right)b^2-p\left(1-p\right)c^2>0\)

\(\Leftrightarrow p^2c^2+\left(a^2-b^2-c^2\right)p+b^2>0\) (1)

\(\Delta=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2+2bc\right)\left(a^2-b^2-c^2-2bc\right)\)

\(=\left(a^2-\left(b-c\right)^2\right)\left(a^2-\left(b+c\right)^2\right)\)

\(=\left(a+c-b\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)< 0\) theo BĐT tam giác

\(\Rightarrow\) (1) luôn đúng

Bình luận (1)
NL
21 tháng 8 2021 lúc 18:44

Ko xài delta thì biến đổi tương đương (1) xuống bằng cách thêm bớt là được:

\(\left(1\right)\Leftrightarrow p^2c^2+2.\dfrac{a^2-b^2-c^2}{2c}.pc+\left(\dfrac{a^2-b^2-c^2}{2c}\right)^2+b^2-\left(\dfrac{a^2-b^2-c^2}{2c}\right)^2>0\)

\(\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{4b^2c^2-\left(a^2-b^2-c^2\right)^2}{4c^2}>0\)

\(\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left(2bc+a^2-b^2-c^2\right)\left(2bc-a^2+b^2+c^2\right)}{4c^2}>0\)

\(\Leftrightarrow\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]}{4c^2}>0\)

\(\Leftrightarrow\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left(a+b-c\right)\left(a+c-b\right)\left(a+b+c\right)\left(b+c-a\right)}{4c^2}>0\) (luôn đúng theo BĐT tam giác)

Bình luận (0)
NA
Xem chi tiết
AH
17 tháng 8 2021 lúc 0:37

Lời giải:

$a(b-c)^2+b(a-c)^2\vdots a+b$

$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$

$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$

$\Leftrightarrow 4abc\vdots a+b$

Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$

Khi đó;

$4abc\vdots p\Leftrightarrow abc\vdots p$

$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$

Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)

Nếu $b\vdots p$ thì tương tự (vô lý)

Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$

$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)

Do đó điều giả sử sai. Tức $a+b$ là hợp số.

Bình luận (0)
Xem chi tiết
ZZ
2 tháng 3 2020 lúc 15:19

Do a,b,c là độ dài 3 cạnh tam giác:

\(a< b+c;b< c+a;c< a+b\)

\(\Rightarrow a^2< ab+ac;b^2< bc+ab;c^2< ac+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca>\frac{a^2+b^2+c^2}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT

Cảm ơn bn nha~~

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
DM
22 tháng 7 2016 lúc 14:12

Dễ thấy : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\) 

Tương tự :  \(b+c\le\sqrt{2\left(b^2+c^2\right)}\),  \(c+a\le\sqrt{2\left(c^2+a^2\right)}\)

=>      \(2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Bình luận (0)
MH
Xem chi tiết
H24
10 tháng 10 2017 lúc 22:40

>0 hay>2 vậy bạn?

Bình luận (0)
MH
10 tháng 10 2017 lúc 22:41

>0 bạn nhé

Bình luận (0)
H24
10 tháng 10 2017 lúc 22:52

Ok.

Có: Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)

mà theo đề ta có: a,b,c là độ dài 3 cạnh trong tam giác

nên theo bất đẳng thức tam giác ta có:

\(a+c>b\) và \(a+b>c\)==> \(a-b+c>0\) và \(a+b-c>0\)

Nhân vế theo vế 2 đẳng thức trên ta được: \(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm

Bình luận (0)
DH
Xem chi tiết
TD
28 tháng 5 2018 lúc 20:51

Ta có :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)       (1)

Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :

\(a^2< a.\left(b+c\right)\)

\(\Rightarrow a^2< ab+ac\)

Tương tự :

\(b^2< ab+bc\)

\(c^2< ca+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)              (2)

Từ (1) và (2)

=> Đpcm

Bình luận (0)