cho a,b,c là độ dài 3 cạnh tam giác chứng minh
\(\frac{1}{a+b}\), \(\frac{1}{b+c}\),\(\frac{1}{a+c}\) cũng là độ dài 3 cạnh tam giác
cho a,b,c là độ dài 3 cạnh tam giác .
1.CMR : abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
2. \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác.
Cho a,b,c là độ dài 3 cạnh tam giác.Chứng minh rằng:
\(\frac{c^n}{a+b-c}+\frac{b^n}{a-b+c}+\frac{a^n}{-a+b+c}\ge a^{n-1}+b^{n-1}+c^{n-1}\) với \(\forall n\in N\)
cho a,b,c là độ dài 3 cạnh của một tam giác, biết\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\). Chứng minh tam giác đó đều.
cho a,b,c là độ dài 3 cạnh của một tam giác, biết \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\) . Chứng minh tam giác đó đều.
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: 1/(a+b), 1/(a+c), 1/(b+c) cũng là dộ dài 3 cạnh của 1 tam giác
Gọi a,b,c là độ dài 3 cạnh của 1 tam giác ABC ,biết \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{a}{c}\right)=8\).Chứng minh rằng tam giác ABC đều
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+3\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. Hãy chứng minh: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)<5\)