Những câu hỏi liên quan
JT
Xem chi tiết
TT
Xem chi tiết
H24
26 tháng 4 2018 lúc 21:32

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2002^2}+\dfrac{1}{2003^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2001.2002}+\dfrac{1}{2002.2003}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}+\dfrac{1}{2002}-\dfrac{1}{2003}\)

\(A< 1-\dfrac{1}{2003}< 1\)

Vậy \(A< 1\)

Bình luận (0)
TL
Xem chi tiết
NP
20 tháng 4 2018 lúc 14:09

Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2003^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2002.2003}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2002}-\frac{1}{2003}\)

\(=1-\frac{1}{2003}< 1\)

Vậy S<1

Bình luận (0)
TL
20 tháng 4 2018 lúc 14:12

bạn có thể giải rõ ra được ko

Bình luận (0)
VH
20 tháng 4 2018 lúc 14:19

ta co 1/2^2<1/1*2+1/3^2+1/2*3+...+1/2003^2 1/2002*2003

1/2^2+1/3^2+...+1/2003^2<1/1*2+1/2*3+...+1/2002*2003

1/2^2+1/3^2+...+1/2003^2<1/1-1/2+1/2-1/3+...+1/2002-1/2003

1/2^2+1/3^2+...+1/2003^2<1-1/2003

1/2^2+1/3^2+...+1/2003^2<2002/2003<1

Vậy 1/2^2+1/3^2+...+1/2003^2<1

Bình luận (0)
HN
Xem chi tiết
DT
31 tháng 3 2017 lúc 9:17

Đáp án của tớ là:

\(\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}=\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)=\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)

Vậy:\(1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)

Bình luận (0)
H24
6 tháng 3 2015 lúc 16:36

xin chòa hôm nay mình sẽ giúp bạn lam bài toán này 

ta có

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1+1/2+1/3+....+1/1001)

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1/2+1/4+1/6+....+1/2002)-(1/2+1/4+1/6+......+1/2002)

1/1002+1/1003+.....+1/2003=1+1/2+1/3+....+1/2003-1/2+1/4+1/6+....+1/2002-1/2-1/4-1/6-....-1/2002

Vậy1/1002+1/1002+.....+1/2003=1-1/2+1/3-1/4+....-2/2002-1/2003

Bình luận (0)
DT
31 tháng 3 2017 lúc 9:19

Sửa: Vậy: \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)

Bình luận (0)
H24
Xem chi tiết
TK
15 tháng 1 2016 lúc 13:55

4S - S = 4 + 42 + 43 + 44 +....+ 42002 + 42003 - 1 - 4 - 42 - 43 - 44 -......- 42001 - 42002

 3S =  42003 - 1 => 42003 - 3S = 1  là số nguyên dương nhỏ nhất (đpcm)

Bình luận (0)
LH
Xem chi tiết
CU
30 tháng 1 2016 lúc 9:50

làm ơn tách ra giùm mk

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 4 2021 lúc 15:50

=> A<1/1.2 + 1/2.3 + ....+ 1/2001.2002 + 1/2002.2003

=> A< 1- 1/2 + 1/2 - 1/3 + .... + 1/2001 - 1/2002 + 1/2002 - 1/2003

=>A< 1 - 1/2003 < 1

=> A< 1

Bình luận (0)
SC
Xem chi tiết
CU
30 tháng 1 2016 lúc 9:26

nguyên một hàng mk đọc ko hỉu????????????

Bình luận (0)
OO
30 tháng 1 2016 lúc 9:29

không hiểu......>><

Bình luận (0)
NM
30 tháng 1 2016 lúc 9:29

khó hiểu quá

Bình luận (0)
LN
Xem chi tiết