Những câu hỏi liên quan
VA
Xem chi tiết
MH
1 tháng 9 2021 lúc 9:43

a)A=4(x+11/8)^2 -153/16

Min A=-153/16 khi x=-11/8

b)B=3(x-1/3)^2 -4/3

Min B=-4/3 khi x=1/3

Bình luận (0)
LL
1 tháng 9 2021 lúc 9:44

Bài 1:

a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)

\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)

b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)

Bài 2:

a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)

b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)

\(maxB=11\Leftrightarrow x=-2\)

Bình luận (2)
NT
1 tháng 9 2021 lúc 14:51

Bài 1: 

a: Ta có: \(A=4x^2+11x-2\)

\(=4\left(x^2+\dfrac{11}{4}x-\dfrac{1}{2}\right)\)

\(=4\left(x^2+2\cdot x\cdot\dfrac{11}{8}+\dfrac{121}{64}-\dfrac{153}{64}\right)\)

\(=4\left(x+\dfrac{11}{8}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{11}{8}\)

b: Ta có: \(B=3x^2-2x-1\)

\(=3\left(x^2-\dfrac{2}{3}x-\dfrac{1}{3}\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}\right)\)

\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

Bình luận (0)
NV
Xem chi tiết
NQ
18 tháng 10 2016 lúc 19:52

đơn giản wá 

Bình luận (0)
NA
8 tháng 7 2019 lúc 13:53

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

Bình luận (0)
NV
Xem chi tiết
NT
Xem chi tiết
YT
12 tháng 6 2018 lúc 15:33

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

Bình luận (0)
NT
12 tháng 6 2018 lúc 15:36

ko sao cảm ơn

Bình luận (0)
LK
12 tháng 6 2018 lúc 15:36

1/ Ta có: A\(=x^2-6x+3\)

\(=x^2-2.x.3+3^2-6\)

\(=\left(x-3\right)^2-6\ge-6\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy Min A  = -6 khi x = 3.

Ta có: B = \(x^2+3x+7\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min B = 19/4 khi x = 3/2.

2/ 

Ta có: \(A=-x^2+4x+8\)

\(=-\left(x^2-4x-8\right)=-\left(x^2-4x+4-12\right)\)

\(=-\left[\left(x-2\right)^2-12\right]\)

\(=-\left(x-2\right)^2+12\le12\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Rightarrow x=2\)

Vậy Max A = 12 khi x =2.

Ta có: \(B=-x^2+3x-5\)

\(=-\left(x^2-3x+5\right)=-\left(x^2-3x+\frac{9}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min B = -11/4 khi x =3/2.

Chúc bn hc tốt!

Bình luận (0)
TN
Xem chi tiết
TV
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Bình luận (0)
TT
Xem chi tiết
NL
Xem chi tiết
NT
15 tháng 12 2022 lúc 21:27

a: =-x^2+6x-4

=-(x^2-6x+4)

=-(x^2-6x+9-5)

=-(x-3)^2+5<=5

Dấu = xảy ra khi x=3

b: =3(x^2-5/3x+7/3)

=3(x^2-2*x*5/6+25/36+59/36)

=3(x-5/6)^2+59/12>=59/12

Dấu = xảy ra khi x=5/6

c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)

\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)

\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)

Dấu = xảy ra khi x=4 hoặc x=2

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
TV
6 tháng 1 2021 lúc 20:24

I zì:vv

a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)

Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)

b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Vậy MaxB=21 khi x=-4

Bình luận (9)