Tìm GTNN A=x^2-3x+5. Tìm GTLN B =4x-x^2
Tìm GTNN
a) A= 4x^2+11x-2
b) B= 3x^2-2x-1
Tìm GTLN
a) A = -x^2+3x-1
b) B = -x^2-4x+7
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
Bài 1:
a: Ta có: \(A=4x^2+11x-2\)
\(=4\left(x^2+\dfrac{11}{4}x-\dfrac{1}{2}\right)\)
\(=4\left(x^2+2\cdot x\cdot\dfrac{11}{8}+\dfrac{121}{64}-\dfrac{153}{64}\right)\)
\(=4\left(x+\dfrac{11}{8}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{11}{8}\)
b: Ta có: \(B=3x^2-2x-1\)
\(=3\left(x^2-\dfrac{2}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
Tìm GTNN,GTLN
a) A= (x-1) (x-3) + 11
b) B= 5 - 4x2 + 4x
c) C= (x2-3x+1) (x2-3x-1)
d) D= (x-1) (x+5) (x2+4x+5)
a) \(A=x^2-3x-x+3+11\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\in R\)
Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
b) \(B=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\forall x\in R\)
Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
\(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)
Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
Tìm GTNN,GTLN
a) A= (x-1) (x-3) + 11
b) B= 5 - 4x2 + 4x
c) C= (x2-3x+1) (x2-3x-1)
d) D= (x-1) (x+5) (x2+4x+5)
1) Tìm GTNN
A= x2-6x+3
B=x2+3x+7
2) Tìm GTLN
A=-x2+4x+8
B=-x2+3x-5
\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
1/ Ta có: A\(=x^2-6x+3\)
\(=x^2-2.x.3+3^2-6\)
\(=\left(x-3\right)^2-6\ge-6\left(\forall x\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy Min A = -6 khi x = 3.
Ta có: B = \(x^2+3x+7\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min B = 19/4 khi x = 3/2.
2/
Ta có: \(A=-x^2+4x+8\)
\(=-\left(x^2-4x-8\right)=-\left(x^2-4x+4-12\right)\)
\(=-\left[\left(x-2\right)^2-12\right]\)
\(=-\left(x-2\right)^2+12\le12\left(\forall x\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Rightarrow x=2\)
Vậy Max A = 12 khi x =2.
Ta có: \(B=-x^2+3x-5\)
\(=-\left(x^2-3x+5\right)=-\left(x^2-3x+\frac{9}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\left(\forall x\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min B = -11/4 khi x =3/2.
Chúc bn hc tốt!
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Bài 6:Tìm GTLN,GTNN (nếu có) trong các biểu thức sau:
a)A=-4-x^2+6x
b)B=3x^2-5x+7
c)C=/x-3/(2-/x-3/)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4