Những câu hỏi liên quan
HT
Xem chi tiết
NA
Xem chi tiết
LD
12 tháng 7 2021 lúc 10:29

\(A=\sqrt{64a^2}\cdot2a=\sqrt{\left(8a\right)^2}\cdot2a=\left|8a\right|\cdot2a\)

Với a < 0 A = 8a.(-2a) = -16a2

Với a ≥ 0 A = 8a.2a = 16a2

\(B=3\sqrt{9a^6}-6a^3=3\sqrt{\left(3a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
LP
Xem chi tiết
TM
Xem chi tiết
HT
9 tháng 9 2021 lúc 19:19

\(\sqrt{11+6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

Bình luận (3)
KK
9 tháng 9 2021 lúc 19:19

Mik ko hiểu đề lắm

Bình luận (3)
NT
9 tháng 9 2021 lúc 22:58

\(\sqrt{11+6\sqrt{2}}=3+\sqrt{2}\)

Bình luận (0)
AD
Xem chi tiết
NT
27 tháng 7 2023 lúc 14:36

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+2\right)}{2+\sqrt{2}+\sqrt{3}}\)

=1+căn 2

Bình luận (0)
H9
27 tháng 7 2023 lúc 14:57

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{3}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)+\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 10 2023 lúc 21:42

\(\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}+\sqrt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}+\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{3-2}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)

Bình luận (1)
NT
Xem chi tiết
TL
7 tháng 4 2020 lúc 11:10

a) \(\frac{2^7\cdot9^3}{6^5\cdot8^2}=\frac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\frac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\frac{3}{2^4}=\frac{3}{16}\)

c) \(\frac{5^4\cdot20^4}{25^4\cdot4^5}=\frac{5^4\cdot\left(2^2\cdot5\right)^4}{\left(5^2\right)^4\cdot\left(2^2\right)^5}=\frac{5^4\cdot2^8\cdot5^4}{5^8\cdot2^{10}}=\frac{1}{2^2}=\frac{1}{4}\)

d) \(\frac{\left(5^4\cdot20^4\right)^3}{125^4}=\frac{5^{12}\cdot20^{12}}{\left(5^3\right)^4}=\frac{5^{12}\cdot\left(2^2\cdot5\right)^{12}}{5^{12}}=2^{24}\cdot5^{12}\)

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết