Những câu hỏi liên quan
DV
Xem chi tiết
NA
21 tháng 1 2022 lúc 23:44

a) \(6x^2-2x-6x^2+13=0\\ -2x=-13\\ x=\dfrac{13}{2}\)

Bình luận (0)
NT
21 tháng 1 2022 lúc 23:46

b: =>2x-2x-1=x-6x

=>-5x=-1

hay x=1/5

Bình luận (0)
AH
21 tháng 1 2022 lúc 23:50

Lời giải:
a. 

$2x(3x-1)=6x^2-13$

$\Leftrightarrow 6x^2-2x=6x^2-13$

$\Leftrightarrow 2x=13$

$\Leftrightarrow x=\frac{13}{2}$

b. 

$\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x$

$\Leftrightarrow \frac{2x-(2x+1)}{6}=\frac{-5}{6}x$

$\Leftrightarrow \frac{-1}{6}=\frac{-5}{6}x$
$\Leftrightarrow x=\frac{-1}{6}: \frac{-5}{6}=\frac{1}{5}$

Bình luận (0)
KD
Xem chi tiết
KD
24 tháng 8 2017 lúc 15:02

k ho cai

Bình luận (0)
H24
24 tháng 8 2017 lúc 15:09

k hộ please

Bình luận (0)
H24
24 tháng 8 2017 lúc 15:15

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
BA
Xem chi tiết
DT
9 tháng 12 2017 lúc 14:45

a)TH1 x>=3 \(\left|x-3\right|\)=x-3

pttt: x-3-2x=1 suy ra x=-4 <3 -> loại

TH2 x=< 3 pttt 3-x-2x=1 suy ra x =2/3 thỏa mãn

b) VT=\(\dfrac{4^{x+2}+4^{x+1}+4^x}{21}=\dfrac{4^x\left(4^2+4+1\right)}{21}=4^x\)

VP= \(\dfrac{3^{2x}+3^{2x+1}+3^{2x+3}}{31}=\dfrac{9^x\left(1+3+27\right)}{31}=9^x\)

vậy pt đã cho tương đương với 4^x=9^x \(\Leftrightarrow\left(\dfrac{4}{9}\right)\)^x =1 suy ra x =0

Bình luận (2)
TT
Xem chi tiết
NT
23 tháng 3 2017 lúc 11:12

Không có điều kiện j của x, y ak bn batngo

Bình luận (2)
NG
Xem chi tiết
KD
Xem chi tiết
B1
26 tháng 8 2017 lúc 20:20

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bình luận (0)
HH
Xem chi tiết
NT
28 tháng 7 2021 lúc 22:23

a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)

\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)

\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)

 

Bình luận (0)
NT
28 tháng 7 2021 lúc 22:31

c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)

\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)

 

Bình luận (0)
TB
Xem chi tiết
TL
Xem chi tiết
H24
17 tháng 1 2023 lúc 17:46

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)

\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)

\(\Leftrightarrow12x-9=29x-145\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x+136=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\left(tm\right)\)

Vậy \(S=\left\{8\right\}\)

 

\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)

\(\Rightarrow2x-1=2\left(5-3x\right)\)

\(\Leftrightarrow2x-1=10-6x\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x-11=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{11}{8}\right\}\)

 

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)

\(\Rightarrow4x-5=3x-2\)

\(\Leftrightarrow4x-5-3x+2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{3\right\}\)

 

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)

\(\Rightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)

 

 

 

Bình luận (0)
H24
17 tháng 1 2023 lúc 17:37

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\)

\(2,\dfrac{2x-1}{5-3x}=2\)

\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\)

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)

\(\Leftrightarrow4x-5-2x+2+2x=0\)

\(\Leftrightarrow4x=3\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)

Bình luận (0)