Những câu hỏi liên quan
VQ
Xem chi tiết
H24
2 tháng 10 2017 lúc 20:04

\(=\left(4n-3\right)^2-\left(3n-4\right)^2\)

\(=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)\right]-\left(3n-4\right)\)

\(=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)

Vậy \(\left(4n-3\right)^2-\left(3n-4\right)^2\)   Chia hết cho 7 với mọi n thuộc Z

Bình luận (0)
NT
2 tháng 10 2017 lúc 11:32

t.i.c.k mik mik t.i.c.k lại

Bình luận (0)
TH
2 tháng 10 2017 lúc 12:17

\(\left(4n-3\right)^2-\left(3n-4\right)^2=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)-\left(3n-4\right)\right]=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)

Bình luận (0)
NO
Xem chi tiết
SG
25 tháng 7 2016 lúc 17:28

a) 5n + 11 chia hết cho 3n + 4

=> 3.(5n + 11) chia hết cho 3n + 4

=> 15n + 33 chia hết cho 3n + 4

=> 15n + 20 + 13 chia hết cho 3n + 4

=> 5.(3n + 4) + 13 chia hết cho 3n + 4

Do 5.(3n + 4) chia hết cho 3n + 4 => 13 chia hết cho 3n + 4

Mà 3n + 4 chia 3 dư 1 => \(3n+4\in\left\{1;13\right\}\)

=> \(3n\in\left\{-3;9\right\}\)

=> \(n\in\left\{-1;3\right\}\)

b) 2n2 + 3n - 11 chia hết cho n + 2

=> 2n2 + 4n - n - 2 - 9 chia hết cho n + 2

=> 2n.(n + 2) - (n + 2) - 9 chia hết cho n + 2

=> (n + 2).(2n - 1) - 9 chia hết cho n + 2

Do (n + 2).(2n - 1) chia hết cho n + 2 => 9 chia hết cho n + 2

=> \(n+2\in\left\{1;-1;3;-3;9;-9\right\}\)

=> \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)

Câu b bn ý chép sai đề 1 chút, mk đã hỏi bn ý và sửa lại nên lm như trên

Bình luận (0)
AL
25 tháng 7 2016 lúc 17:20

5n+11 chia hết cho 3n+4

=>15n+33 chia hết cho 3n+4

mà 15n+20 chia hết cho 3n+4

=>13 chia hết cho 3n+4

=>3n+4=13,1,-1,-13

=>3n=9,-3,-5,-16

=>n=3,-1

Bình luận (0)
H24
26 tháng 7 2016 lúc 4:56

a) 5n + 11 chia hết cho 3n + 4

=> 3.(5n + 11) chia hết cho 3n + 4

=> 15n + 33 chia hết cho 3n + 4

=> 15n + 20 + 13 chia hết cho 3n + 4

=> 5.(3n + 4) + 13 chia hết cho 3n + 4

Do 5.(3n + 4) chia hết cho 3n + 4 => 13 chia hết cho 3n + 4

Mà 3n + 4 chia 3 dư 1 => $3n+4\in\left\{1;13\right\}$3n+4∈{1;13}

=> $3n\in\left\{-3;9\right\}$3n∈{−3;9}

=> $n\in\left\{-1;3\right\}$n∈{−1;3}

b) 2n2 + 3n - 11 chia hết cho n + 2

=> 2n2 + 4n - n - 2 - 9 chia hết cho n + 2

=> 2n.(n + 2) - (n + 2) - 9 chia hết cho n + 2

=> (n + 2).(2n - 1) - 9 chia hết cho n + 2

Do (n + 2).(2n - 1) chia hết cho n + 2 => 9 chia hết cho n + 2

=> $n+2\in\left\{1;-1;3;-3;9;-9\right\}$n+2∈{1;−1;3;−3;9;−9}

=> $n\in\left\{-1;-3;1;-5;7;-11\right\}$n∈{−1;−3;1;−5;7;−11}

Câu b bn ý chép sai đề 1 chút, mk đã hỏi bn ý và sửa lại nên lm như trên

Bình luận (0)
KM
Xem chi tiết
KM
6 tháng 1 2016 lúc 15:58

umk mình cũng nghĩ vậy để mk coi lại

Bình luận (0)
TT
Xem chi tiết
MD
Xem chi tiết
NK
7 tháng 7 2020 lúc 14:07

khó thế ai làm đc

Bình luận (0)
 Khách vãng lai đã xóa
TM
7 tháng 7 2020 lúc 14:25

Bg

Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))

=> n không chia hết cho 6

Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.

=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))

Xét n = 6x + 1:

=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5

Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn

= 4(6x + 1) + 3(6x + 1) + 5

= 24x + 4 + 18x + 3 + 5

= 24x + 18x + (4 + 3 + 5)

= 24x + 18x + 12

Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6

Nên 24x + 18x + 12\(⋮\)6

=> 4.(n2) + 3n + 5 \(⋮\)6

=> ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
MD
7 tháng 7 2020 lúc 19:53

@Trần Công Mạnh thanks nha, tặng bạn 1 tk như đã hứa!! ^^

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NP
15 tháng 4 2018 lúc 16:04

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

Bình luận (0)
LT
Xem chi tiết
VM
16 tháng 3 2020 lúc 20:03

bạn giở lại sách ra nhé :)))0

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
XO
1 tháng 7 2021 lúc 14:41

a) Ta có : n3 + 3n2 + 2n

= n(n2 + 3n + 2) 

= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)

b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299

= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)

= 31 + 25.31 + .. + 295.31

= 31(1 + 25 + ... + 295\(⋮31\)(đpcm) 

c) Ta có 49n + 77n - 29n - 1

= (49n - 1) + (77n - 29n

= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm) 

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
NT
4 tháng 10 2021 lúc 23:59

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Bình luận (0)
VL
Xem chi tiết
H24
29 tháng 7 2019 lúc 21:15

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

Bình luận (0)
EC
29 tháng 7 2019 lúc 21:16

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...

Bình luận (0)
EC
29 tháng 7 2019 lúc 21:25

3) Đặt A = 3n + 1

=> 2A = 6n + 2 = -3(1 - 2n) + 5

Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n

Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n

=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}

Với: +)1 - 2n = 1 => 2n = 0 => n = 0

+)1 - 2n = -1 => 2n = 2 => n = 1

+) 1  - 2n = 5=> 2n = -4 => n = -2

+) 1 - 2n = -5 => 2n = 6 => n = 3

3) Đặt B = 3n + 2

=> 5B = 15n + 10 = -3(11 - 5n) + 21 

Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B  \(⋮\)11 - 5n

Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n

=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}

Lập bảng : 

11-5n 1 -1 3 -3 7 -7 21 -21
  n 2 12/5(ktm)8/5(ktm)14/5(ktm)4/5(ktm)18/5(ktm)-232(ktm)

Vậy ...

Bình luận (0)