Những câu hỏi liên quan
NN
Xem chi tiết
BB
Xem chi tiết
NL
22 tháng 12 2020 lúc 19:57

\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)

Bình luận (0)
HP
Xem chi tiết
PH
10 tháng 5 2017 lúc 21:17

TC \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\left(do\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\right)\)

thay vào \(xyz.\frac{3}{xyz}=3\)

Bình luận (0)
BT
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
LP
Xem chi tiết
TL
10 tháng 2 2023 lúc 19:23

không biết :))))

Bình luận (0)
KK
Xem chi tiết
VM
21 tháng 2 2020 lúc 11:18

Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz

=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2

mà (1/x+1/y+1/z)^2=3

=>p=3-2=1

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
DH
23 tháng 2 2021 lúc 16:45

\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)

\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)

\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa