Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử :
x4 + 81
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử:
a) 64 x 4 + 81; b) x 8 + 4 y 4 ; c) x 8 + x 7 +1.
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng từ:
a) x 8 + 64; b) x 4 + 4 y 4 ; c) x 5 +x + 1.
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
a)x^4+1
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
64x4+81
x8+4y4
x8+x7+1
64x^4+81
=64x^4+144x^2+81-144x^2
=(8x^2+9)^2-(12x)^2
=(8x^2-12x+9)(8x^2+12x+9)
x^8+4y^4
=x^8+4x^4y^2+4y^4-4x^4y^2
=(x^4+2y^2)^2-(2x^2y)^2
=(x^4-2x^2y+2y^2)(x^4+2x^2y+2y^2)
x^8+x^7+1
=x^8+x^7+x^6-x^6+1
=x^6(x^2+x+1)-(x^6-1)
=(x^2+x+1)*x^6-(x-1)(x+1)(x^2+x+1)(x^2-x+1)
=(x^2+x+1)[x^6-(x^2-1)(x^2-x+1)]
=(x^2+x+1)(x^6-x^4+x^2-x^2+x^2-x+1)
=(x^2+x+1)(x^6-x^4+x^2-x+1)
Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt hạng tử: x^3 - 3x^2 - 4
phân tích đa thức thành nhân tử
a) x8 + x4 + 1 ( bằng cách thêm bớt hạng tử x2 )
x⁸ + x⁴ + 1
= x⁸ + 2x⁴ + 1 - x⁴
= (x⁴ + 1)² - x⁴
= (x⁴ + 1)² - (x²)²
= (x⁴ + 1 + x²)(x⁴ + 1 - x²)
= (x⁴ + x² + 1)(x⁴ - x² + 1)
Phân tích đa thức thành nhân tử:
x^8+x^4+1 bằng phương pháp thêm bớt hạng tử x^2
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)