\(x^2+\sqrt{x^2+2x+8}=-3x-3\)
phương pháp đặt ẩn phụ thông thường
Giải phương trình \(\sqrt{3x+1}+\sqrt{2x-1}+x^2+2x-6=0\) bằng phương pháp đặt ẩn phụ
giải phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
2) \(2\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Giải các phương trình vô tỉ sau bằng phương pháp đặt ẩn phụ:
a)\(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
b)\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)
dùng phương pháp đặt ẩn phụ để giả pt sau: \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đk : với mọi x
Đặt \(\sqrt{x^2-3x+3}=a\)
pt trở thành : a+\(\sqrt{a^2+3}\)=3
<=> \(\sqrt{a^2+3}\)= 3-a
=> a^2+3 = 9-6a+a^2
<=> a^2+3-(9-6a+a^2)=0
<=> 6a-6=0
<=> 6a=6
<=> a=1
<=> \(\sqrt{x^2-3x+3}\)=1
<=> x^2-3x+3=1
<=> x^2-3x+2=0
<=> (x-1).(x-2) = 0
<=> x=1 hoặc x=2
Thử lại thì đều tm
Vậy .............
Tk mk nha
bài quân thêm đk a>=0 ; và khi bình phương thì 3-a >=0
Giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ:
a) \(\sqrt{\left(1+x\right)\left(2-x\right)}=1+2x-2x^2\)
b) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
Giải phương trình sau theo phương pháp đặt ẩn phụ:
\(\sqrt[4]{7x^2+2x+13}=\sqrt[4]{x+3}+\sqrt[4]{3x-x^2+8}\)
ĐK: \(\left\{{}\begin{matrix}x+3\ge0\\-x^2+3x+8\ge0\\7x^2+2x+13\ge0\end{matrix}\right.\) (*)
\(PT\Leftrightarrow\sqrt[4]{-7\left(-x^2+3x+8\right)+23\left(x+3\right)}=\sqrt[4]{x+3}+\sqrt[4]{-x^2+3x+8}\)
Với \(x=-3\) => pt không thỏa mãn
Với \(x>-3\),chia cả 2 vế của phương trình cho \(\sqrt[4]{x+3}\)
\(PT\Leftrightarrow\sqrt[4]{-7.\frac{-x^2+3x+8}{x+3}+23}=1+\sqrt[4]{\frac{-x^2+3x+8}{x+3}}\)
Đặt \(t=\frac{-x^2+3x+8}{x+3}\left(t\ge0\right)\)
\(PT\Leftrightarrow\sqrt[4]{-7t+23}=1+\sqrt[4]{t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le t\le\frac{23}{7}\\-7t+23=1+t+4\sqrt[4]{t}+6\sqrt{t}+4\sqrt[4]{t}^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le t\le\frac{23}{7}\\4t+2\sqrt[4]{t}^3+3\sqrt{t}+2\sqrt[4]{t}-11=0\left(1\right)\end{matrix}\right.\)
Giải (1) \(\Leftrightarrow\left(\sqrt[4]{t}-1\right)\left(4\sqrt[4]{t}^3+6\sqrt{t}+9\sqrt[4]{t}+11\right)=0\)
Với \(0\le t\le\frac{23}{7}\) \(\Rightarrow t=1\)
\(t=1\Leftrightarrow\) \(-x^2+3x+8=x+3\Leftrightarrow x^2-2x-5=0\) \(\Leftrightarrow x=1\pm\sqrt{6}\)
Thử lại thấy \(x=1\pm\sqrt{6}\) thỏa mãn.
Vậy...
Giải phương trình bằng cách đặt ẩn phụ
1, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
2, \(x^2+4x+1-2x\sqrt{3x+1}=\sqrt{3x+1}\)
3, \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
Câu 1:
ĐK: \(x\geq -8\)
Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:
\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)
\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)
\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)
\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)
\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)
\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)
\(\Leftrightarrow (x-a+2)(3x-a)=0\)
\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)
\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$
\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)
\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)
Vậy PT có nghiệm duy nhất $x=1$
Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)
Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:
\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)
\(\Leftrightarrow x^2+x+a^2-2ax=a\)
\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)
\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)
Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)
Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)
\(\Rightarrow x=0\) hoặc $x=1$
Vậy.........
Câu 3:
Đặt \(\sqrt{x^2+3}=a(a\geq 0)\)
PT đã cho tương đương với:
\((x^2+3)+2x^2+2x=(3x+1)\sqrt{x^2+3}\)
\(\Leftrightarrow a^2+2x^2+2x=(3x+1)a\)
\(\Leftrightarrow a^2+2x^2+2x-3ax-a=0\)
\(\Leftrightarrow (a^2+4x^2-4ax)+2x-a-2x^2+ax=0\)
\(\Leftrightarrow (a-2x)^2-(a-2x)+x(a-2x)=0\)
\(\Leftrightarrow (a-2x)(a-x-1)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ a=x+1\end{matrix}\right.\)
Nếu \(2x=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq 0\\ 4x^2=x^2+3\end{matrix}\right.\Rightarrow x=1\) (t/m)
Nếu \(x+1=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=x^2+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ 2x=2\end{matrix}\right.\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất $x=1$
giải phương trình bằng phương pháp đặt ẩn phụ:
ạ) \(2\sqrt{\left(-2x^2+5x+7\right)}=x^3-3x^2-x+12\)
b) \(x^2-3x+3=\left(4+3x-\frac{4}{x}\right)\sqrt{\left(x-1\right)}\)
giải phương trình ( đặt ẩn phụ )
1) x2-2x+3=2.\(\sqrt{2x^2-4x+3}\)
2) x2+2x.\(\sqrt{x-\frac{1}{x}}\)= 3x+2
3)x4-2x3+x-\(\sqrt{2\left(x^2-x\right)}\)=0
( đặt 2 ẩn phụ )
1) x2+2=2\(\sqrt{x^3+1}\)
2) 3.\(\sqrt{x^3+8}\)=2x2-3x+10
3) \(\sqrt{4x+1}\)-\(\sqrt{3x-2}\)=x+3
Bài 1:
ĐK: $x\in\mathbb{R}$
Đặt $\sqrt{2x^2-4x+3}=a(a\geq 0)$
$\Rightarrow 2x^2-4x+3=a^2\Leftrightarrow 2(x^2-2x+3)-3=a^2$
$\Leftrightarrow x^2-2x+3=\frac{a^2+3}{2}$
PT trở thành: $\frac{a^2+3}{2}=2a$
$\Leftrightarrow a^2-4a+3=0$
$\Leftrightarrow (a-1)(a-3)=0\Leftrightarrow a=1$ hoặc $a=3$
Nếu $a=1\Rightarrow a^2-1=0\Leftrightarrow 2x^2-4x+3-1=0$
$\Leftrightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1$ (thỏa mãn)
Nếu $a=3\Rightarrow a^2-9=0\Leftrightarrow 2x^2-4x+3-9=0$
$\Leftrightarrow x^2-2x-3=0\Leftrightarrow x=3$ hoặc $x=-1$
Vậy.........
Bài 2: Bạn xem lại đề.
Bài 3:
ĐKXĐ: $x\geq 1$ hoặc $x\leq 0$
PT $\Leftrightarrow (x^4-2x^3+x^2)-(x^2-x)-\sqrt{2(x^2-x)}=0$
$\Leftrightarrow (x^2-x)^2-(x^2-x)-\sqrt{2(x^2-x)}=0$
Đặt $\sqrt{2(x^2-x)}=a(a\geq 0)$ thì pt trở thành:
$(\frac{a^2}{2})^2-\frac{a^2}{2}-a=0$
$\Leftrightarrow a^4-2a^2-4a=0$
$\Leftrightarrow a(a^3-2a-4)=0$
$\Leftrightarrow a(a-2)(a^2+2a+2)=0$
Dễ thấy $a^2+2a+2>0$ nên $a(a-2)=0\Rightarrow a=0$ hoặc $a=2$
Nếu $a=0\Leftrightarrow \sqrt{2(x^2-x)}=0$
$\Leftrightarrow x^2-x=x(x-1)=0\Rightarrow x=0$ hoặc $x=1$ (thỏa mãn)
Nếu $a=2\Leftrightarrow \sqrt{2(x^2-x)}=2$
$\Rightarrow x^2-x=2\Leftrightarrow x^2-x-2=0\Rightarrow x=2$ hoặc $x=-1$ (thỏa mãn)
Vậy..
Bài 4: ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow x^2+2=2\sqrt{(x+1)(x^2-x+1)}$
Đặt $\sqrt{x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$ thì pt trở thành:
$a^2+b^2=2ab$
$\Leftrightarrow (a-b)^2=0\Leftrightarrow a-b=0$
$\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+1-(x^2-x+1)=0$
$\Leftrightarrow 2x-x^2=0\Leftrightarrow x(2-x)=0$
$\Rightarrow x=0$ hoặc $x=2$ (đều thỏa mãn)
Vậy..........