Chứng tỏ 2 + 22 + 23 + ... + 2200 vừ chia hết cho 5 vừa chia hết cho 31
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
=1872643+8712648-127649817
=9873264+98293:8726
chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
Chứng tỏ rằng
B = 2^2 + 2^3 + ..............+ 2^100 vừa chia hết cho 31 vừa chia hết cho 5
Sửa đề: \(B=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)⋮5\)
\(B=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(2+2^6+...+2^{96}\right)⋮31\)
Chứng tỏ rằng
B = 2^2 + 2^3 + ..............+ 2^100 vừa chia hết cho 31 vừa chia hết cho 5
did you studied at le van tam primary school
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M
5
đăng 3 lần rồi giúp mik ik
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik ik mik cần gắp
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik và chỉ cách trình bày cho mik nhen
Chứng tỏ :
a) C = 1 + 5 + 5^2 + 5^3 + ... + 5^403 + 5^404 chia hết cho 31.
b) E = 3 + 3^2 + 3^3 + ... + 3^60 vừa chia hết cho 4 , vừa chia hết cho 13.
chứng tỏ rằng:
2 + 2 mũ 2 + 2 mũ 3 + ..............+2 mũ 100 vừa chia hết cho 31, vừa chia hết cho 5
Gọi C là giá trị của biểu thức trên
a) CMR : C chia hết cho 31
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{19}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+2^6.31+...+2^{96}.31\)
\(C=31\left(2+2^6+2^{10}+...+2^{96}\right)⋮31\)(đpcm)
b) CMR : C chia hết cho 5
\(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)+2^{98}\left(1+2^2\right)\)
=\(2.5+2^2.5+...+2^{97}.5+2^{98}.5\)
\(=5\left(2+2^2+...+2^{97}+2^{98}\right)⋮5\)(đpcm)
Vậy 2 + 2^2 + 2^3 + ...+ 2^98 + 2^99 + 2^100 vừa chia hết cho 5 vừa chia hết cho 31