Những câu hỏi liên quan
LQ
Xem chi tiết
ND
20 tháng 9 2023 lúc 20:58

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

Bình luận (0)
HT
Xem chi tiết
HT
Xem chi tiết
H24
5 tháng 12 2021 lúc 9:10

1, Số tận cùng là 4 thì chia hết cho 2                            Đ

2, Số chia hết cho 2 thì có chữ số tận cùng là 4         Đ

3, Số chia hết cho 5 thì có chữ số tận cùng là 5         Đ

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7            S

5, Số chia hết cho 9 có thể chia hết cho 3                       Đ

6, Số chia hết cho 3 có thể chia hết cho 9                      S

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9               S

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r                  Đ

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó                    S

10, Hợp số là số tự nhiên nhiều hơn 2 ước                Đ

11, Một số nguyên tố đều là số lẻ                        S

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5                        S

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8              Đ

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số                 Đ

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố              Đ

16, Hai số nguyên tố là hai số nguyên tố cùng nhau                             S

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau                         S

ht

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
YK
15 tháng 11 2014 lúc 21:32

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

Bình luận (0)
YK
15 tháng 11 2014 lúc 21:52

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

Bình luận (0)
NT
4 tháng 12 2014 lúc 19:56

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

 
Bình luận (0)
NC
Xem chi tiết
CV
9 tháng 1 2016 lúc 16:28

là 1 đó bạn 

TicK nha

Bình luận (0)
NC
Xem chi tiết
BB
21 tháng 3 2016 lúc 10:11

dư 1

vd n=4               n^2 :3=4^2:3 =16:3=5 dư 1

Bình luận (0)
PH
21 tháng 3 2016 lúc 10:12

n^2 khi chia cho 3 sẽ có số dư là 1

Bình luận (0)
QD
Xem chi tiết
OO
3 tháng 1 2016 lúc 12:47

\(1\)

Bình luận (0)
HL
3 tháng 1 2016 lúc 12:47

 du 1 phai ko ?????????????

Bình luận (0)
TN
3 tháng 1 2016 lúc 12:58

Dư 1

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 2:52

Bình luận (0)
NS
16 tháng 1 2021 lúc 9:44

Có n không chia hết cho 3

=> n^2 không chia hết cho 3 (1)

Vì n^2 là số chính phương

=> n^2 chia cho 3 dư 1 hoặc 0 (2)

Từ (1) và (2) => n^2 chia 3 dư 1

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
18 tháng 5 2019 lúc 4:53

Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)

Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra  n 2  chia cho 3 dư 1.

Nếu n = 3k+2 thì   n 2  = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra  n 2  chia cho 3 dư 1.

=>  ĐPCM

Bình luận (0)
PA
Xem chi tiết
NH
26 tháng 9 2016 lúc 20:11

1. a chia cho 12 dư 8

=>a=12.k+8

=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)

a không  chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.

Bình luận (3)