cho n là một số tự nhiên không chia hết cho 3. khẳng định n2 chia cho 3 thì dư 1
Chứng minh rằng:
a) n và n5 có chữ số tận cùng giống nhau với n là số tự nhiên.
b) n2 luôn luôn chia cho 3 dư 1 với n không chia hết cho 3 và n là số tự nhiên.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
1, Số tận cùng là 4 thì chia hết cho 2
2, Số chia hết cho 2 thì có chữ số tận cùng là 4
3, Số chia hết cho 5 thì có chữ số tận cùng là 5
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7
5, Số chia hết cho 9 có thể chia hết cho 3
6, Số chia hết cho 3 có thể chia hết cho 9
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó
10, Hợp số là số tự nhiên nhiều hơn 2 ước
11, Một số nguyên tố đều là số lẻ
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố
16, Hai số nguyên tố là hai số nguyên tố cùng nhau
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau
1, Số tận cùng là 4 thì chia hết cho 2 Đ
2, Số chia hết cho 2 thì có chữ số tận cùng là 4 Đ
3, Số chia hết cho 5 thì có chữ số tận cùng là 5 Đ
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7 S
5, Số chia hết cho 9 có thể chia hết cho 3 Đ
6, Số chia hết cho 3 có thể chia hết cho 9 S
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9 S
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r Đ
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó S
10, Hợp số là số tự nhiên nhiều hơn 2 ước Đ
11, Một số nguyên tố đều là số lẻ S
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5 S
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8 Đ
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số Đ
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố Đ
16, Hai số nguyên tố là hai số nguyên tố cùng nhau S
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau S
ht
1) Khi chia số tự nhiên a cho 96, được số dư là 24. Hỏi số a có chia hết cho 6. cho 18 không ?
2) Cho số tự nhiên không chia hết cho 5 và khi chia chúng cho thì được các số dư khác nhau. Chứng minh rằng tổng chủa 5 đó chia hết cho 5
3)chứng tỏ rằng 1 số khi chia cho 60 dư 45 thì hia hết cho 15 mà không chia hết cho 30
4)Chứng minh rằng không có số tự nhiên nào chia cho 21 dư 5 còn chia 9 dư 1
5)Tìm số tự nhiên n để:
a)n+4 chia hết n
b)3n+5 chia hết cho n
c)27-4n chia hết cho n
(Các bạn giúp mình với, làm bài nào cũng được)
d)n+6 chia hết cho n+1
e)2n+3 chia hết cho n-2
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
d) Ta có: n + 6 chia hết cho n+1n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
dư 1
vd n=4 n^2 :3=4^2:3 =16:3=5 dư 1
n^2 khi chia cho 3 sẽ có số dư là 1
Nếu n là một số tự nhiên không chia hết cho 3, thì n2 chia cho 3 có số dư là bao nhiêu?
Cho n là một số không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1
Có n không chia hết cho 3
=> n^2 không chia hết cho 3 (1)
Vì n^2 là số chính phương
=> n^2 chia cho 3 dư 1 hoặc 0 (2)
Từ (1) và (2) => n^2 chia 3 dư 1
Cho n là một số không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1
Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)
Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra n 2 chia cho 3 dư 1.
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra n 2 chia cho 3 dư 1.
=> ĐPCM
1. Một số tự nhiên khi chia cho 12 được số dư là 8. Hỏi :
a, Số đó có chia hết cho 4 hay không ?
b,Số đó có chia hết cho 6 không ?
2. Một số tự nhiên a khi chia cho 15 thì dư 12 .
a,Viết dạng tổng quát của số a.
b,Số a có chia hết cho 3 hay không ?
3.Hãy chứng minh:
a.Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 .
b.Tổng của 1 số tự nhiên với số đó viết theo thứ tự ngược lại chia hết cho 11.
1. a chia cho 12 dư 8
=>a=12.k+8
=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)
a không chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.