ax^2+by^2-ay^2-bx^2
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left(ax-ay-bx+by\right)\left(ax+ay+bx+by\right)\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right]\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
Đặt thừa số chúng viết tổng thành tích
a) ax - by - ay + bx
b) ax + by - ay - bx
c) a2 - ( b+c) a + bc
d) ( 3a-2)(4a-3) -(2-3a)(3a+1)
e) ax + ay + az - bx - by - bz - x - y - z
Phân Tích đa thức thành nhân tử:
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+ay+bx+by\right)\left(ax-ay+by-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right].\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
Xin lỗi!
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+ay+bx+by\right)\left(ax-ay+bx-by\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
Rút gọn các phân thức :
a, \(\dfrac{ax+ay-bx-by}{ax-ay-bx+by}\)
b, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
a) \(\dfrac{ax+ay-bx-by}{ax-ay-bx+by}=\dfrac{a\left(x+y\right)-b\left(x+y\right)}{a\left(x-y\right)-b\left(x-y\right)}=\dfrac{\left(a-b\right)\left(x+y\right)}{\left(a-b\right)\left(x-y\right)}=\dfrac{x+y}{x-y}\)
b) \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\dfrac{a+b-c}{a+c-b}\)
2. viết tổng sau thành tích
a, ax+bx=ay+by
a,ax+by+bx+ay-x-y
c, \(x^3z+x^2yz-x^2z^2-x^2yz^2\)
a/ \(x\left(a+b\right)+y\left(a+b\right)=\left(x+y\right)\left(a+b\right)\)
b/ \(a\left(x+y\right)+b\left(x+y\right)-1\left(x+y\right)=\left(a+b-1\right)\left(x+y\right)\)
c/ \(=x^2z\left(x+y-z-yz\right)\)
Tính giá trị biêu thuc:
a/ ax+ay+bx+by biết a+b=-2,x+y=17
b/ax-ay+bx-by biết a+b=-7,x-y=-1
a) \(ax+ay+bx+by=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)=\left(-2\right).17=-34\)
b) \(ax-ay+bx-by=a\left(x-y\right)+b\left(x-y\right)=\left(a+y\right)\left(x-y\right)=\left(-7\right).\left(-1\right)=7\)
Tính giá trị biêu thuc:
a/ ax+ay+bx+by biết a+b=-2,x+y=17
b/ax-ay+bx-by biết a+b=-7,x-y=-1
nhjjfkjnkorkgbklklflfjkbknkm
A,=a.(x+y)+b.(x+y)
=(x+y).(a+B)
=17.(-2)
=-34
Tính giá trị của biểu thức:
a,ax+ay+bx+by biết a+b=-2;x+y=17
b,ax-ay+bx-by biết a+b=-7; x-y=-1
a) suy ra a.(x+y)+b.(x+y)
suy ra (x+y) (a+b)
suy ra 17. (-2) = 34
b) suy ra a.(x-y) + b.(x-y)
suy ra (a+b) (x-y)
suy ra (-7).(-1)
mk làm bậy ko bít đúng hay ko
phân tích đa thức thành nhân tử
a, ax^2+cx^2-ay+ay^2-cy+cy^2
b, ax^2+ay^2-bx^2-by^2+b-a