Tính:
\(\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
Tính giá trị
B=\(\dfrac{1}{25.27}\)+\(\dfrac{1}{27.29}\)\(\)+\(\dfrac{1}{29.31}\)+.....+\(\dfrac{1}{73.75}\)
`=>2B=(2)/(25.27)+(2)/(27.29)+(2)/(29.31)+....+(2)/(73.75)`
`=>2B=(1)/(25)-(1)/(27)+(1)/(27)-(1)/(29)+(1)/(29)-(1)/(31)+.....+(1)/(73)-(1)/(75)`
`=>2B=(1)/(25)-(1)/(75)`
`=>2B=(3)/(75)-(1)/(75)=(2)/(75)`
`=>B=(2)/(75):2`
`=>B=1/75`
\(B=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2B=\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2B=\dfrac{1}{25}-\dfrac{1}{75}=\dfrac{2}{75}\Rightarrow B=\dfrac{1}{75}\)
Ta có: \(B=\dfrac{1}{25\cdot27}+\dfrac{1}{27\cdot29}+\dfrac{1}{29\cdot31}+...+\dfrac{1}{73\cdot75}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{25\cdot27}+\dfrac{2}{27\cdot29}+\dfrac{2}{29\cdot31}+...+\dfrac{2}{73\cdot75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{75}=\dfrac{1}{75}\)
Bài 6: Tính các tổng sau:
A= \(\dfrac{7}{10.11}\)+\(\dfrac{7}{11.12}\)+\(\dfrac{7}{12.13}\)+...+\(\dfrac{7}{69.70}\)
B= \(\dfrac{1}{25.27}\)+\(\dfrac{1}{27.29}\)+\(\dfrac{1}{29.31}\)+...+\(\dfrac{1}{73.75}\)
\(A=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=\dfrac{7.60}{700}=\dfrac{420}{700}=\dfrac{3}{5}\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{75}\right)=\dfrac{1}{75}\)
Tính
A= \(\dfrac{3^2}{8.11}\)+ \(\dfrac{3^2}{18.21}\)+ \(\dfrac{3^2}{14.17}\)+......+ \(\dfrac{3^2}{197.200}\)
B= \(\dfrac{1}{25.27}\)+ \(\dfrac{1}{27.29}\)+ \(\dfrac{1}{29.31}\)+....+ \(\dfrac{1}{73.75}\)
các bạn giải ra giúp mik nha ! Thanks
B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75
\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)
xl bạn , mình gửi nhầm câu a =)
tính:
1/25.27+1/27.29+1/29.31+...+1/73.75
4/2.4 + 4/4.6 +4/6.8 +...+ 4/2008.2010
a, \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{2}{75}\right)\)
\(=\frac{1}{75}\)
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1004}{2010}\right)\)
\(=2\left(\frac{502}{1005}\right)\)
\(=\frac{1004}{1005}\)
Tk hộ =v
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}.\frac{2}{75}=\frac{1}{75}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)=2.\left(\frac{1}{2}-\frac{1}{2010}\right)=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{3}{75}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\frac{2}{75}\)
\(=\frac{1}{75}\)
Câu dưới đặt 2 ra ngoài rồi làm bình thường.
Tính:
\(A=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(\Rightarrow2A=\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\)
\(\Rightarrow2A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(\Rightarrow2A=\frac{1}{25}-\frac{1}{75}=\frac{3}{75}-\frac{1}{75}=\frac{2}{75}\)
\(\Rightarrow A=\frac{2}{75}\div2=\frac{1}{75}\)
A=7/10.11+7/11.12+7/12.13+...+7/69.70
B=1/25.27+1/27.29+1/29.31+...+1/73.75
1) A = 7/ 10.11 + 7/ 11.12 + 7/ 12.13 + .... + 7/69.70
2 ) B = 1/ 25.27 + 1/ 27.29 + 1/29.31+ ......+ 1/ 73.75
1) A=7/10.11+7/11.12+7/12.13+...+7/69.70
A=7.(1/10.11+1/11.12+1/12.13+...+1/69.70)
A= 7.(1/10-1/11+1/11-1/12+1/12-1/13+...+1/69-1/70)
A= 7.(1/10-1/70)
A=7.3/35=3/5
2)B=1/25.27+1/27.29+1/29.31+...+1/73.1/75
B=1/25-1/27+1/27-1/29+1/29-1/31+...+1/73-1/75
B=1/25-1/75=2/75
A = 7/ 10.11 + 7/ 11.12 + 7/ 12.13 + .... + 7/69.70
(1/7).A=1/10.11+1/11.12+...+1/69.70
=1/10-1/11+1/11-1/12+...+1/69-1/70
=1/10-1/70=3/35
=>A=7.(3/35)
=3/5
2 ) B = 1/ 25.27 + 1/ 27.29 + 1/29.31+ ......+ 1/ 73.75
=>(1/2).B=2/25.27+...+2.73.75
=1/25-1/27+...+1/73-1/75
=1/25-1/75
=2/75
=>B=4/75
A=7.(1/10.11+1/11.12+1/12.13+...+1/69.70)
A= 7.(1/10-1/11+1/11-1/12+1/12-1/13+...+1/69-1/70)
A= 7.(1/10-1/70)
A=7.3/35=3/5
2)B=1/25.27+1/27.29+1/29.31+...+1/73.1/75
B=1/25-1/27+1/27-1/29+1/29-1/31+...+1/73-1/75
B=1/25-1/75=2/75
B=1/25.27+1/27.29+1/29.31+......+1/73.75
F=4/2.3+4/4.6+4/6.8+.....+4/2008.2010
Tính tổng đó nha các bạn
Ta có :
\(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(2B=\frac{2}{25.27}+\frac{1}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\)
\(2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+....+\frac{1}{73}-\frac{1}{75}\)
\(2B=\frac{1}{25}-\frac{1}{75}\)
\(2B=\frac{2}{75}\)
\(\Rightarrow B=\frac{1}{75}\)
Vậy B = \(\frac{1}{75}\)
\(F=\frac{4}{2.3}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(\Rightarrow F=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
\(\Rightarrow F=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(\Rightarrow F=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(\Rightarrow F=2.\frac{502}{1005}=\frac{1004}{1005}\)
Vậy F = \(\frac{1004}{1005}\)