Những câu hỏi liên quan
A4
Xem chi tiết
NT
10 tháng 9 2023 lúc 21:40

\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

2017>2015

=>căn 2017>căn 2015

=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)

=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

Bình luận (0)
HT
Xem chi tiết
NT
5 tháng 10 2021 lúc 23:32

b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)

nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)

Bình luận (0)
MT
Xem chi tiết
EC
30 tháng 12 2015 lúc 15:01

tick đi sau làm cho

t

Bình luận (0)
MT
30 tháng 12 2015 lúc 15:02

Big hero 6 đáp án là > mà Mài hả bưởi

Bình luận (0)
VT
30 tháng 12 2015 lúc 15:04

Không biết !

Bình luận (0)
DC
Xem chi tiết
DA
15 tháng 6 2018 lúc 21:30

\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)

\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)

=> Bằng nhau

Bình luận (0)
DH
16 tháng 6 2018 lúc 8:36

\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)

\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)

\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)

Bình luận (0)
AT
Xem chi tiết
AN
15 tháng 10 2019 lúc 15:30

Ta có:

\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)

\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

Ta thấy rằng:

\(\sqrt{2018}>\sqrt{2016}\)

\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)

\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)

Bình luận (0)
DE
14 tháng 10 2019 lúc 22:04

bawngf nhau

Bình luận (0)
AT
14 tháng 10 2019 lúc 22:05

giải ra giùm mình với bạn -.-

Bình luận (0)
NA
Xem chi tiết
TT
Xem chi tiết
NT
5 tháng 2 2022 lúc 22:46

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)

mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2014}+\sqrt{2015}\)

nên \(\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)

Bình luận (0)
NM
Xem chi tiết
NH
22 tháng 9 2019 lúc 8:51

sprt là gì

Bình luận (0)
TW
22 tháng 9 2019 lúc 8:53

bằng nhau. vì

= sqrt(2017-2016) =sqrt (1)

=sqrt(2016-2015) =sqrt (2)

từ (1) (2) => 2 cái đó bằng nhau.

đây là cách trình  bày nháp. khi bạn viết ra bài thì ghi  đề ra nha. CHÚC HỌC TỐT!

Bình luận (0)
KS
22 tháng 9 2019 lúc 9:03

\(\sqrt{2017}-\sqrt{2016}\) với \(\sqrt{2016}-\sqrt{2015}\)

Ta có : 

\(\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}\) \(=\frac{1}{\sqrt{2017}+\sqrt{2016}}< \frac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2016}-\sqrt{2015}=\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\)

Do đó :
\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

Chúc bạn học tốt !!!

Bình luận (0)
US
Xem chi tiết
BB
Xem chi tiết
OY
18 tháng 10 2021 lúc 19:46

Ta có: \(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015.2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016.2017}\)

\(2015.2018=2015.2017+2015=2017\left(2015+1\right)-2017+2015=2017.2016-2\)\(\Rightarrow2015.2018< 2016.2017\)

\(\Rightarrow4033+2\sqrt{2015.2018}< 4033+2\sqrt{2016.2017}\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\left(đpcm\right)\)

Bình luận (1)
H24
18 tháng 10 2021 lúc 19:46

Đặt \(A=\sqrt{2015}+\sqrt{2018}\Rightarrow A^{^2}=4033+2\sqrt{2015.2018}\)

\(B=\sqrt{2016}+\sqrt{2017}\Rightarrow B^{^2}=4033+2\sqrt{2016.2017}\)

Ta có: 2015.2018 = 2015.2017 + 2015

2016.2017 = 2015.2017 + 2017

Dễ dàng thấy được 2015.2018 < 2016.2017 => A2 < B2

=> A < B

Bình luận (0)
TC
18 tháng 10 2021 lúc 20:06

Để phần so sánh chặt chẽ hơn, bạn có thể dùng cách này.

undefined

Bình luận (0)