giải pt nghiệm nguyên:
\(3x^2+5y^2=345\)
tìm nghiệm nguyên của pt: 3x^2 + 5y^2 =345
Nhận xét: 345 và 5y^2 chia hết cho 5 nên 3x^2 chia hết cho 5 => x^2 chia hết cho 5 mà 3x^2 < 345 => x^2 < 345 : 3 = 115
=> x^2 = 25; 100 => y2 = 54 hoặc 9
=> chọn x^2 = 100 và y^2 = 9
=> x = 10 ; -10
y = 3; -3
Tìm nghiệm nguyên của đa thức 3x2+5y2=345
Tìm nghiệm nguyên của phương trình:
3x2 + 5y2 = 345
Mình chưa học phương trình nên giải theo cách của lớp dưới thôi :)))
Vì \(\hept{\begin{cases}345⋮5\\5y^2⋮5\end{cases}}\Rightarrow3x^2⋮5\)
Mà \(\left(3;5\right)=1\Rightarrow x^2⋮5\Rightarrow x⋮5\)
Lại có \(3x^2\le345\Rightarrow x^2\le115\Rightarrow\left|x\right|\le10\)
Mà \(x⋮5\Rightarrow x\in\left\{0;\pm5;\pm10\right\}\)
\(x=0\Rightarrow y^2=\frac{345}{5}=69\)không phải số chính phương\(x=\pm5\Rightarrow3.25+5y^2=345\)\(\Rightarrow y^2=\frac{345-3.25}{5}=54\)không phải số chính phương
\(x=\pm10\Rightarrow3.100+5.y^2=345\)\(\Rightarrow y^2=\frac{345-3.100}{5}=9\Rightarrow y=\pm3\)
Vậy \(\left(x;y\right)\in\left\{\left(10;3\right);\left(10;-3\right);\left(-10;3\right);\left(-10;-3\right)\right\}\)
\(3x^2+5y^2=345=>x^2=\frac{345-5y^2}{3}=>x=\sqrt{\frac{345-5y^2}{3}}\)
MODE 7 (TABLE) nhập \(f\left(x\right)=\sqrt{\frac{345-5X^2}{3}}\)
start -9 end: 9 ,step=1
tìm đc \(\left(x;y\right)=\left(10;3\right);\left(3;10\right);\left(-10;-3\right);\left(-3;-10\right)\)
đây là sử dụng máy tính casio
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqquuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Tìm nghiệm nguyên của pt \(x^2+2y^2+3xy+3x+5y=15\)
Ta có:
x2 + 2y2 + 3xy + 3x + 5y = 15
<=> x2 + 2y2 + 3xy + 3x + 5y + 2 = 17
<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17
<=> (x + y + 2)(x + 2y + 1) = 17
=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)
Giải ra là tìm được x,y nhé
VeryVery good.Thanks. I will give 1 for you.Love
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
giải pt nghiệm nguyên: x2 + 2y2 + 3xy + 3x + 5y = 15
PT đã cho ghép nhóm vào được :
\(\left(x^2+3xy+\frac{9}{4}y^2\right)+2\left(x+\frac{3}{2}y\right).\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\left(y^2-2y+1\right)=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}\right)^2-\frac{1}{4}\left(y-1\right)^2=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}-\frac{1}{2}y+\frac{1}{2}\right)\left(x+\frac{3}{2}y+\frac{3}{2}+\frac{1}{2}y-\frac{1}{2}\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17\)
Sau đấy lập bảng xét ước
Giải phương trình nghiệm nguyên
1) \(3x^2+5y^2=345\)
2) \(6x^2+5y^2=74\)
3) \(2^x+y^2+y=111\)
1) Ta thấy 345, 5y^2 chia ht 5 suy ra 3x^2 chia ht 5 suy ra x chia ht 5 ( 5 và 3 ng tố cùng nhau). Đặt x=\(5x_1\)
Vậy 3x^2=75\(x_1^2\)Thay vào PT rồi chia 2 vế cho 5 đc
15\(x_1^2\)+y^2=69 Ta thấy y^2 phải chia ht cho 3 Đặt y=\(3y_1\Rightarrow y^2=9y_1^2\) vào PT rồi chia 2 vế cho 3 đc
\(5x_1^2+3y_1^2=23\) suy ra 2 hạng tử của VT ko đồng thời bằng 0 Suy ra \(o\le5x_1^2\le23\) mà \(x_1\in Z\Rightarrow0\le5x_1^2\le20\) bạn làm tiếp nhé, chỉ cần thay 5x1^2 từ 0,1,2,3,4 Là tìm đc x rồi y
2) 6x^2 chia ht 2, 74 chia ht 2 suy ra 5y^2 chia ht 2 .Mà 5 và 2 là số ng tố cùng nhau suy ra 5 chia ht y Đặt \(y=2a\Rightarrow5y^2=20a^2\) Thay vào PT rồi chia 2 vế cho 2 đc
3x^2+10a^2=37 Suy ra x,a ko đồng thời =0
\(\Rightarrow3x^2+10a^2=37\ge3\) Mà y nguyên suy ra a nguyên Thay 10a^2=(10,20,30) sẽ tìm a rồi tìm y, rồi tìm x .Bạn tự lm típ
Với x dương, \(2^x⋮2\) và y^2+y chia ht 2. Mà 111 ko chia ht 2 PT vô nghiệm
-Với x=0 PT cũng vô nghiệm
-Với x âm, tác có PT trở thành
\(\frac{1}{2^x}+y\left(y+1\right)=111\) Với x>0
\(\Leftrightarrow\left(111-y\left(y+1\right)\right).2^x=1\Rightarrow y\) ko thuộc Z PT vô nghiệm
ìm ngiệm nguyên của phương trình: 3x^2+5y^2=345
Giải phương trình nghiệm nguyên 1)x^2-6x+54=y^2
2) x^2+3y^2=21
3)x^2+21=y^2
4)x^2+2y-2y^2=5
5)xy-x-y=2002
6)3x^2-12x+5y^2=57
7)x^2+x+1=(y^2+y+1)^2
8)x^2+xy+y^2=x^2y^2
9)3x^2+5y^2=345
10)x^6+3x^2+1=y^4