Những câu hỏi liên quan
FN
Xem chi tiết
OO
Xem chi tiết
TD
14 tháng 4 2020 lúc 16:54

gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\)  và \(x_1x_2=b+1\)

Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)

\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)

\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
BV
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
DA
Xem chi tiết
NL
18 tháng 3 2021 lúc 10:53

Do pt có 1 nghiệm là \(2-\sqrt{3}\)

\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)

\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)

\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)

Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)

Bình luận (0)
NV
Xem chi tiết
PA
Xem chi tiết
NT
28 tháng 2 2016 lúc 21:24

Ta có:

\(x^2+y^2+x+y=4\)x(x+y+1)+y(y+1)=2

=>

x^2+y^2+x+y=4x^2+y^2+x+y+xy=2

=>

(x+y)^2+(x+y)-2xy=4xy=-2

=>

(x+y)(x+y+1)=0xy=-2

=>1)

x+y=0xy=-2

2)

x+y=-1xy=-2

giải các hệ pt 1) và 2) ta được (x;y)=(\(\left(\sqrt{2};-\sqrt{2}\right),\left(-\sqrt{2};\sqrt{2}\right),\left(-2;1\right),\left(1;-2\right)\)

Bình luận (0)
H24
Xem chi tiết
TX
26 tháng 5 2017 lúc 22:37

bạn nè,mặc dù mình ko biết làm nhưng bạn chỉ cần cố gắng là làm được

Bình luận (0)