cho a+b+c=0. C/m: a.(a+b).(a+c)=b.(b+c).(b+a)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1)cho a,b,c>0. c/m ; a/a+b+b/b+c+c/c+a>1
2)cho a,b,c>0. c/m :a/c+a+b/a+b+c/b+c<2
Bài 4: Chứng minh rằng: -(a-b-c)+(-a+b-c)-(-a+b+c)=-(a-b+c)
Bài 5: Cho M=(-a+b)-(b+c-a)+(c-a) Chứng minh rằng: Nếu a<0 thì M>0
Mình cần gấp ạ!
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
cho b+c-5/a=a+c+2/b=a+b+3/c=1/a+b+c(với a,b,c≠0,a+b+c≠0)
Tính giá trị biểu thức M=(a-3b)(b-c)(3c-a)
cho b+c-5/a=a+c+2/b=a+b+3/c=1/a+b+c(với a,b,c≠0,a+b+c≠0)
Tính giá trị biểu thức M=(a-3b)(b-c)(3c-a)
cho a + b + c = 0 . CM : M = N = P M = a ( a + b ) ( a + c ) N = b ( b + c ) ( a + b ) P = c ( c + b ) ( a + c )
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)
\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)
\(\Rightarrow\)\(M=N=P\)
Cho a+b+c=0. C/m M=N=P với:
M= a(a+b)(a+c)
N=b(b+c)(b+a)
P=c(c+a)(c+b)
\(M=a\left(a+b\right)\left(a+c\right)=a\left(a^2+ac+ba+bc\right)\)
\(=a^3+a^2c+a^2b+abc=a^2\left(a+b+c\right)+abc\)
\(=a^20+abc=abc\) (1)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(b^2+ba+cb+ca\right)\)
\(=b^3+b^2a+b^2c+abc=b^2\left(a+b+c\right)+abc\)
\(=b^20+abc=abc\) (2)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(c^2+cb+ac+ab\right)\)
\(=c^3+c^2b+c^2a+abc=c^2\left(a+b+c\right)+abc\)
\(c^20+abc=abc\) (3)
từ (1);(2)và(3) ta có : \(M=N=P=abc\)
vậy khi \(\left(a+b+c\right)=0\)thì \(M=N=P\) (đpcm)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
cho a>0 , b>0 , c>0 , M=a/a+b +b/b+c +c/a+c . tìm phần nguyên của M
Cho a,b,c khác 0 và đôi 1 khác nhau t/m a+b+c=0. Tính
A=\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)