Những câu hỏi liên quan
TN
Xem chi tiết
SV
25 tháng 1 2015 lúc 16:35

Từ gt 1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0 (1)

Mặt khác x + y + z =1. Bình phương 2 vế ta đc : : x+ y2 + z2 + 2(xy + yz + zx) = 1 (2)

Từ (1) và (2) suy ra x2 + y2 + z2 =1. Vậy A  =1 

Bình luận (0)
HT
25 tháng 1 2015 lúc 19:09

Minh lam them cach khac nua gop vui: x^2 + y^2 + z^2 = (x+y)^2 - 2xy + z^2 = (1- z)^2 - 2xy + z^2 = 1 - 2z - 2xy + 2z^2

Tuong tu = 1 - 2x - 2yz + 2z^2 = 1 - 2y - 2zx + 2x^2. Cộng vế theo vế của 3 đẳng thức trên ta được:

3(x^2 + y^2 + z^2) = (1+1+1) - 2(x+y+z) - 2(xy + yz + zx) + 2(x^2 + y^2 + z^2) <=> x^2 + y^2 + z^2 = 3 - 2.1 - 2xyz(1/x + 1/y + 1/z) = 1

Bình luận (0)
DT
Xem chi tiết
VN
Xem chi tiết
XO
10 tháng 7 2021 lúc 8:35

Cộng vế với vế ta được

x2 + 2y + 1 + y2 + 2x + 1 + z2 + 2x + 1 = 0 

<=> (x2 + 2x + 1) + (y2 + 2y + 1) + (z2 + 2z + 1) = 0

<=> (x + 1)2 + (y + 1)2 + (z + 1)2 = 0

<=> \(\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\Leftrightarrow x=y=z=-1\)

Khi đó A = x2000 + y2000 + z2000

= (-1)2000 + (-1)2000 + (-1)2000 = 1 + 1 + 1 = 3

Vậy A = 3

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
22 tháng 9 2020 lúc 10:56

2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)

lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)

lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\) 

lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)

cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 9 2020 lúc 10:39

1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
22 tháng 9 2020 lúc 12:50

mik cần c3 , ai làm giúp mik đc ko 

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
NL
Xem chi tiết
AH
17 tháng 12 2021 lúc 22:26

Lời giải:
Nếu $x+y+z=0$ thì:

$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$

$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$

$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$ 

(thỏa mãn đkđb)

Khi đó:

$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$

$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$

Nếu $x+y+z\neq 0$

Áp dụng TCDTSBN:

$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$

$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:

$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$

Bình luận (0)
NB
Xem chi tiết
H24
Xem chi tiết
NT
6 tháng 1 2024 lúc 19:38

\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)

=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)

=>yz+2xz+3xy=0

=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)

\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)

=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)

=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)

=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)

=>A+xy+2/3xz+1/3yz=1

=>A=1

Bình luận (0)
VL
Xem chi tiết
AH
23 tháng 9 2021 lúc 18:07

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$

Tương tự:

$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$

$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$

Cộng theo vế:

$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)

Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$

Bình luận (1)