Cho x, y, z dương thỏa mãn \(\left\{{}\begin{matrix}x^2+xy+y^2=1\\y^2+yz+z^2=\dfrac{1}{4}\\x^2+xz+z^2=\dfrac{3}{4}\end{matrix}\right.\)
Tính B=x+y+z
Tìm bộ ba số nguyên \(\left(x,y,z\right)\) thỏa mãn \(x-y-z+3=0\) và \(x^2-y^2-z^2=1\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
Cho các số dương x, y, z thỏa mãn: 1/x+1/y+1/z=4. CM: 1/2x^2+y^2+z^2+1/x^2+2y^2+z^2+1/x^2+y^2+2z^2 bé hơn hoặc bằng 1
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)