Những câu hỏi liên quan
CK
Xem chi tiết
CK
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết
TT
Xem chi tiết
DL
18 tháng 3 2021 lúc 20:29

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

Bình luận (0)
NT
18 tháng 3 2021 lúc 20:31

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

Bình luận (0)
HT
Xem chi tiết
TT
19 tháng 8 2017 lúc 10:02

a) Ta có :  \(\left(\sqrt{\sqrt{x^2+x+1}}\right)^2\)\(\left(\sqrt{\sqrt{x^2-x+1}}\right)^2\)

ko âm nên áp dụng bđt \(a^2\)+\(b^2\)\(\ge\)2ab

 \(\left(\sqrt{\sqrt{x^2+x+1}}\right)^2\)+\(\left(\sqrt{\sqrt{x^2-x+1}}\right)^2\)\(\ge\)\(2\left(\sqrt[4]{\left(x^2+x+1\right)\left(x^2-x+1\right)}\right)\)

\(\Leftrightarrow\)\(\sqrt{x^2+x+1}\)+\(\sqrt{x^2-x+1}\)\(\ge\)\(2\left(\sqrt[4]{x^4+x+1}\right)\)\(\ge\)\(2\)\(\forall x\)

Bình luận (0)
TA
Xem chi tiết
TC
20 tháng 5 2017 lúc 10:21

Ta có:\(\left(\frac{6}{x^2-6x}+\frac{1}{x+6}\right):\frac{x^2+36}{x^2-36}\)

   \(=\left(\frac{6\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)}+\frac{x\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x^2-6^2}{x^2+36}\)

     \(=\left(\frac{6x+36+x^2-6x}{x\left(x-6\right)\left(x+6\right)}\right).\frac{\left(x-6\right)\left(x+6\right)}{x^2+36}\)

        \(=\frac{x^2+36}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+36}\)

      \(=\frac{1}{x}\)

Kiểm tra đi bạn phải là \(\frac{1}{x}\)

Bình luận (0)
NH
Xem chi tiết
DV
5 tháng 7 2016 lúc 18:37

Bài 1 : 

Ta có :

\(a^2+b^2\ge2ab\)

\(;a^2+1\ge2a\)

\(;b^2+1\ge2b\)

\(\Rightarrow a^2+b^2+a^2+b^2+2\ge2ab+2a+2b\)

\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)

Bình luận (0)
DV
5 tháng 7 2016 lúc 18:39

Bài 2 :

\(A=x^2-6x+10=\left(x-3\right)^2+1>0\) với mọi x

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x

Bình luận (0)
TL
Xem chi tiết
NT
18 tháng 1 2022 lúc 15:22

a:

Thay x=2 vào (1), ta được:

\(2^2-5\cdot2+6=0\)(đúng)

Thay x=2 vào (2), ta được:

\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)

b: (1)=>(x-2)(x-3)=0

=>S1={2;3}

 (2)=>\(x+2x^2+x-4x-2-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

=>(x+2)(x-1)=0

=>S2={-2;1}

vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)

Bình luận (0)
AE
Xem chi tiết
AE
31 tháng 3 2019 lúc 21:14

ai đúng cho 3 k

Bình luận (0)