Những câu hỏi liên quan
TP
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
TN
2 tháng 1 2018 lúc 22:06

post ít một thôi

Bình luận (0)
PL
Xem chi tiết
DW
3 tháng 1 2019 lúc 18:49

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

Bình luận (1)
AH
4 tháng 1 2019 lúc 0:56

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
AH
4 tháng 1 2019 lúc 0:59

Bài 2:

Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)

\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)

\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
LY
Xem chi tiết
TH
30 tháng 12 2020 lúc 16:16

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

Bình luận (0)
TH
30 tháng 12 2020 lúc 16:26

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

Bình luận (0)
DL
Xem chi tiết
TH
5 tháng 4 2022 lúc 11:09

\(VT=\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{a}{c+b}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}-3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3\)

-Áp dụng BĐT Caushy Schwarz cho 3 số dương ta có:

\(VT\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}-3=\left(a+b+c\right).\dfrac{9}{2\left(a+b+c\right)}-3=\dfrac{9}{2}-3=\dfrac{3}{2}\left(1\right)\)

\(VP=\dfrac{2.\left(\dfrac{a}{a^2+1}+\dfrac{1}{2}+\dfrac{b}{b^2+1}+\dfrac{1}{2}+\dfrac{c}{c^2+1}+\dfrac{1}{2}-\dfrac{3}{2}\right)}{2}=\dfrac{\dfrac{2a}{a^2+1}+1+\dfrac{2b}{b^2+1}+1+\dfrac{c}{c^2+1}-3}{2}=\dfrac{\dfrac{a^2+2a+1}{a^2+1}+\dfrac{b^2+2b+1}{b^2+1}+\dfrac{c^2+2c+1}{c^2+1}-3}{2}=\dfrac{\dfrac{\left(a+1\right)^2}{a^2+1}+\dfrac{\left(b+1\right)^2}{b^2+1}+\dfrac{\left(c+1\right)^2}{c^2+1}-3}{2}\)-Áp dụng BĐT Caushy ta có:

\(VP\le\dfrac{\dfrac{2\left(a^2+1\right)}{a^2+1}+\dfrac{2\left(b^2+1\right)}{b^2+1}+\dfrac{2\left(c^2+1\right)}{c^2+1}-3}{2}=\dfrac{2+2+2-3}{2}=\dfrac{3}{2}\left(2\right)\)

-Từ (1) và (2) ta có:

\(VT\ge\dfrac{3}{2}\ge VP\Rightarrow\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\ge\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\left(đpcm\right)\)

-Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (1)
TP
Xem chi tiết
VH
Xem chi tiết
HI
Xem chi tiết
NL
25 tháng 5 2019 lúc 19:09

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Bình luận (0)
NK
Xem chi tiết
VT
11 tháng 9 2017 lúc 21:59

a. \(a^3+a^2c-abc+b^2c+b^3\)

<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)

<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

vì a+b+c =0 => đpcm

Bình luận (0)
VT
11 tháng 9 2017 lúc 22:03

b. 2(a+1)(b+1)=(a+b)(a+b+2)

<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)

<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)

<=> \(a^2+b^2=2\)=> đpcm

Bình luận (0)
HT
22 tháng 9 2019 lúc 21:26

a. a^3+a^2c-abc+b^2c+b^3a3+a2cabc+b2c+b3

<=> \left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)(a3+b3)+c(a2−ab+b2)

<=> (\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)(a+b)(a2−ab+b2)+c(a2−ab+b2)

<=> \left(a+b+c\right)\left(a^2-ab+b^2\right)(a+b+c)(a2−ab+b2)

vì a+b+c =0 => đpcm

b. 2(a+1)(b+1)=(a+b)(a+b+2)

<=> 2\left(ab+a+b+1\right)=2(ab+a+b+1)=a^2+ab+2a+ab+b^2+2ba2+ab+2a+ab+b2+2b

<=> 2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b2ab+2a+2b+2=a2ab+2a+ab+b2+2b

<=> a^2+b^2=2a2+b2=2=> đpcm

Bình luận (0)