Những câu hỏi liên quan
ND
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NT
11 tháng 7 2023 lúc 21:11

loading...

 

Bình luận (0)
TN
Xem chi tiết
NT
11 tháng 7 2023 lúc 9:52

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC

Bình luận (0)
SN
Xem chi tiết
H24
Xem chi tiết
YY
30 tháng 5 2018 lúc 20:04

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

Bình luận (0)
TT
15 tháng 4 2020 lúc 13:42

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 4 2020 lúc 13:42

Lời giải:

a)

HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900

Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)

b)

Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^

Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)

⇒AMNˆ=ACBˆ⇒AMN^=ACB^

Xét tam giác AMNAMN và ACBACB có:

{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)

⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)

c)

Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)

ACBˆ=AMNˆACB^=AMN^ (cmt)

⇒AEBˆ=AMNˆ⇒AEB^=AMN^

⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^

⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp

⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)

⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.

Chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TH
Xem chi tiết
I
1 tháng 4 2022 lúc 21:46

undefined

a)

xét tứ giác AEHF có :

AEH = 900 (BE là đường cao của B trên AC )

AFH = 900 (CF là dường cao của C trên AB )

ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau 

==> tứ giác AEHF nội tiếp 

xét tứ AEDB có :

AEB = 900 (BE là dường cao của B trên AC )

ADB = 900 (AD là đường cao của A trên BD )

mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông 

==> tứ giác AEDB nội tiếp

câu b vì mình ko hiểu đường cao của đường tròn là gì :/

 

Bình luận (0)
AT
Xem chi tiết
NT
25 tháng 3 2021 lúc 21:56

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC

Bình luận (0)
LT
Xem chi tiết
HT
30 tháng 5 2018 lúc 19:53

a) Ta có\(\widehat{ADB}=\widehat{AFB}=90độ\left(gt\right)\)

Nên tứ giác ABDF nội tiếp ( 2 đỉnh EF cùng nhìn AB với 2 góc bằng nhau)

b) Ta có \(\widehat{AEDC}=90độ\)(góc nội tiếp chắn nửa đường tròn)

Nên ΔACE vuông tại C

Xét 2 tam giác vuông ABD và ACE có

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Nên ΔABD ~ ΔACE

Do đó \(\frac{AB}{AC}=\frac{AD}{AE}\)

Hay AB.AE=AD.AC

c) (Mình nghĩ câu này bạn ghi nhầm, theo mình thì ở đây ta phải chứng minh DF vuông góc AC)

Ta có \(\widehat{DFE}=\widehat{ABD}\)(tứ giác ABDF nội tiếp)

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Do đó \(\widehat{DFE}=\widehat{AEC}\)

Ta lại có 2 góc này ở vị trí so le trong

Nên DF song song EC

Mà EC vuông góc AC

Suy ra DF vuông góc AC

Bình luận (0)