Những câu hỏi liên quan
QT
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Bình luận (0)
NL
Xem chi tiết
DH
6 tháng 11 2021 lúc 18:17

a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).

b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)

Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
PQ
30 tháng 6 2018 lúc 17:02

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTNN của \(A\) là \(2\) khi \(x=3\)

\(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)

\(\Leftrightarrow\)\(x-10=0\)

\(\Leftrightarrow\)\(x=10\)

Vậy GTNN của \(B\) là \(1\) khi \(x=10\)

Chúc bạn học tốt ~ 

Bình luận (0)
H24
30 tháng 6 2018 lúc 17:09

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(A_{Min}=2\Leftrightarrow x=3\)

b) \(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\)

Mà  \(\left(x-10\right)^2\ge0\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(x-10=0\Leftrightarrow x=10\)

Vậy  \(B_{Min}=1\Leftrightarrow x=10\)

c)  \(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\)

      \(\left(y-1\right)^2\ge0\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vây  \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
H24
30 tháng 6 2018 lúc 17:13

\(D=4x-x^2+3\)

\(-D=x^2-4x-3\)

\(-D=\left(x^2-4x+4\right)-7\)

\(-D=\left(x-2\right)^2-7\)

Mà  \(\left(x-2\right)^2\ge0\)

\(\Rightarrow-D\ge-7\)

\(\Leftrightarrow D\le7\)

Dấu "=" xảy ra khi :  \(x-2=0\Leftrightarrow x=2\)

Vậy  \(D_{Max}=7\Leftrightarrow x=2\)

\(E=-x^2+6x-11\)

\(-E=x^2-6x+11\)

\(-E=\left(x^2-6x+9\right)+2\)

\(-E=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow-E\ge2\)

\(\Leftrightarrow E\le-2\)

Dấu "=" xảy ra khi  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(E_{Max}=-2\Leftrightarrow x=3\)

Bình luận (0)
HL
Xem chi tiết
NT
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Bình luận (0)
PH
Xem chi tiết
ND
4 tháng 10 2015 lúc 19:36

a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11

Vì (2x-2)2luôn lớn hơn hoặc bằng 0

=>A>hoặc =0+11 hay a>hoặc =11

vậy GTNN của A là 11 khi x=1

Bình luận (0)
NA
Xem chi tiết
AN
22 tháng 8 2016 lúc 7:47

Cái này cứ hằng đẳng thức là ra hếthết

Bình luận (0)
NL
Xem chi tiết
YN
6 tháng 11 2021 lúc 20:52

a) \(6x-x^2-11\)

\(=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-[\left(x-3\right)^2+2]\)

Mà: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow-\left(x-3\right)^2\le0\)

\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)

\(\Rightarrow A\le-2\)

Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)

b) \(x^2-5x-2\)

\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)

Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)

Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\)  khi \(x=\frac{5}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết