Những câu hỏi liên quan
NG
Xem chi tiết
Y
17 tháng 4 2019 lúc 23:06

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}+\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\) \(+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x^2+x+1\right)+y^2+y+1}{\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x^2-y^2\right)-\left(x-y\right)}{x^2y^2+x^2y+xy^2+x^2+y^2+xy+x+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{x^2y^2+xy\left(x+y\right)+xy+x^2+y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y\right)\left(x+y+1\right)}{x^2y^2+2xy+x^2+y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Bình luận (0)
TV
Xem chi tiết
NB
Xem chi tiết
AN
21 tháng 4 2017 lúc 10:24

Ta có:

\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)

\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)

\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)

Ta lại có:

\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)

\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)

Theo đề bài ta có: (sửa đề luôn)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Bình luận (0)
AK
7 tháng 1 2019 lúc 19:14

Em xin đóng góp cách 2 ạ 

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}\)

\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x^3+y^3\right)+1}\)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-\left(x^2-xy+y^2\right)+x^2+2xy+y^2}\)

\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)

\(=\frac{\left(x-y\right).\left(-2\right)xy}{xy\left(x^2y^2+3\right)}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Do \(\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

Bình luận (0)
CM
10 tháng 2 2019 lúc 21:14

\(gt\Rightarrow y-1=-x\Rightarrow x-1=-y\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left(x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+2xy+x^2+y^2+2\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(dpcm\right)\)

Bình luận (0)
DA
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
NT
31 tháng 8 2021 lúc 20:33

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

mà 2x+y-z=0

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)

Do đó: x=3; y=2; z=8

Bình luận (0)
NV
Xem chi tiết
TT
Xem chi tiết
DH
14 tháng 9 2018 lúc 15:57

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)

Bình luận (0)
PN
Xem chi tiết