Những câu hỏi liên quan
NH
Xem chi tiết
NT
26 tháng 8 2021 lúc 22:28

a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

c: \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

 

Bình luận (0)
LP
26 tháng 8 2021 lúc 20:30

a)\(x^4+4\\ =\left(x^2\right)^2+4x^2+4-4x^2\\ =\left[\left(x^2\right)^2+4x^2+4\right]-\left(2x\right)^2\\ =\left(x^2+2\right)^2-\left(2x\right)^2\\ =\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)

 

Bình luận (0)
H24
26 tháng 8 2021 lúc 20:31

\(a)\; x^4+4 \\= x^4+4x^2+4-4x^2\\=(x^2+2)^2-4x^2\\=(x^2+2-2x)(x^2+2+2x)\)

Bình luận (0)
HH
Xem chi tiết
NA
8 tháng 5 2021 lúc 8:52

x4+2x2+1 

Ta có :

x4 ≥ 0 ∀ x

x2 ≥ 0 ∀ x => 2x≥ 0 ∀ x

=> x4+2x2+1  ≥ 1 >0

Suy ra đa thức trên vô nghiệm

Bình luận (0)
TV
Xem chi tiết
AH
7 tháng 7 2021 lúc 20:29

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

Bình luận (2)
AH
7 tháng 7 2021 lúc 20:34

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 4 2019 lúc 4:58

Bình luận (0)
NA
Xem chi tiết
AD
15 tháng 10 2023 lúc 11:32

\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{64}-1\right)-x^{64}\\ =-1\)

Vậy đa thức ko phụ thuộc vào x

Bình luận (0)
H24
15 tháng 10 2023 lúc 11:33

\(C=(x^2-1)(x^2+1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^4-1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^8-1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^{16}-1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^{32}-1)(x^{32}+1)-x^{64}\\=x^{64}-1-x^{64}\\=-1\)

⇒ Giá trị của C không phụ thuộc vào giá trị của biến

Bình luận (0)
H9
15 tháng 10 2023 lúc 11:33

\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^{16}+1\right)\left(x^{16}-1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=x^{64}-1-x^{64}\)

\(C=-1\)

Vậy: ... 

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2018 lúc 11:32

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 9 2017 lúc 5:06

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 1 2017 lúc 18:14

f(x) = x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7

= (x5 + x5) + (3x2 + 2x2 – 4x2) + (-5x3 + x3) + (-x7 + x7)

= 2x5 + x2 – 4x3.

= 2x5 - 4x3 + x2

Đa thức có bậc là 5

g(x) = x4 + 4x3 – 5x8 – x7 + x3 + x2 – 2x7 + x4 – 4x2 – x8

= (x4 + x4) + (4x3 + x3) – (5x8 + x8) – (x7 + 2x7) + (x2 – 4x2)

= 2x4 + 5x3 – 6x8 – 3x7 – 3x2

= -6x8 - 3x7 + 2x4 + 5x3 - 3x2.

Đa thức có bậc là 8.

Bình luận (0)
PA
22 tháng 2 2021 lúc 11:44

Đa thức có bậc là 5 nhe

Bình luận (0)
 Khách vãng lai đã xóa
LQ
Xem chi tiết
NH

F(\(x\)) = \(x^{2024}\) + (\(x-1\))4 + 10

F(\(x\)) = ( \(x^{1012}\) )2 + ((\(x\) - 1)2)2 + 10
vì (\(x^{2012}\))2 ≥ 0 ; ((\(x\) -1)2)2 ≥ 0

⇒ F(\(x\)) ≥ 0 + 0 + 10 = 10 > 0  (∀ \(x\)

Vậy F(\(x\)) vô nghiệm ( đpcm)

 

Bình luận (0)
TN
Xem chi tiết
ND
27 tháng 6 2020 lúc 15:21

Bài làm:

Ta có: \(x^2-x+1=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)

=> không tồn tại x thỏa mãn

=> Đa thức vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa