CMR \(A=10^n+18n-1\) chia hết cho 27 (n là số tự nhiên)
CMR : A= 10n +18n-1 chia hết cho 27 (n là số tự nhiên)
10n +18n -1 = 9999...9 (n chũ số 9) +1-1+27n-9n
=(9999...9-9n) +27n
= 9.(1111...111-n) +27n
Mà ta có 111...111-n với 111...111 có n chữ số 1 luôn chia hết cho 9
=> 9(111...1-n) chia hết cho 9.9=81 mà 81 chia hết cho 27 -> 9(111...111-n) +27n chia hết choa 27
Giả sử: 10n + 18n - 1 chia hết cho 27
=> 10n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27
CMR : A= 10n +18n-1 chia hết cho 27 ( n là số tự nhiên )
Giả sử: 10 n + 18n - 1 chia hết cho 27
=> 10n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27
10^n +18n -1
= 10^n -1 -9n +27
= 99....9 ( n chữ số 9 ) - 9n + 27
= 9 .( 11.....1 - n ) +27n ((n c/s 1)) chia hết cho 27
CMR
a=10^n+18n-1 chia hết cho 27( nlaf số tự nhiên
Dùng quy nạp nhé!!!
10ⁿ+18n-1 chia hết cho 27 (*)
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0)
Tức là 10^k+18k-1=27t
Xét 10^(k+1)+18(k+1)-1
=10^k+18k-1+9.10^k+18
=27t+9(10^k-1)+27(1)
Mặt khác 10^k-1 chia hết cho 10-1=9
=>10^k-1 chia hết cho 3
=>9(10^k-1) chia hết cho 27(2)
từ (1),(2)=> mệnh đề (*) đúng với n=k+1
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N
10ⁿ+18n-1 chia hết cho 27 (*)
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0)
Tức là 10^k+18k-1=27t
Xét 10^(k+1)+18(k+1)-1
=10^k+18k-1+9.10^k+18
=27t+9(10^k-1)+27(1)
Mặt khác 10^k-1 chia hết cho 10-1=9
=>10^k-1 chia hết cho 3
=>9(10^k-1) chia hết cho 27(2)
từ (1),(2)=> mệnh đề (*) đúng với n=k+1
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N
chứng tỏ A=10^n + 18n - 1 chia hết cho 27 n là số tự nhiên
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Chứng minh rằng số A = 10^n + 18n - 1 chia hết cho 27 ( n là số tự nhiên )
ta sẽ chứng minh bằng quy nạp
Xét n=1 ta có : \(10^n+18n-1=27\text{ chia hết cho 27}\)
Giả sử điều kiện đúng tới n hay \(10^n+18n-1\text{ chia hết cho 27}\)
Xét tại n+1 ta có \(10^{n+1}+18\left(n+1\right)-1=10\times10^n+18n+17=10\times\left(10^n+18n-1\right)-162n+27\)
Dễ thấy \(10^n+18n-1\text{ chia hết cho 27}\) và \(-162n+27=27\times\left(-6n+1\right)\text{ chia hết cho 27}\)
Do đó điều kiện đúng với n+1
Theo nguyên lý quy nạp thì A chia hết cho 27 với mọi số tự nhiên n
Chứng minh rằng: A= 10^n+18n-1 chia hết cho 27( n là số tự nhiên)
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Tick nhé
Chứng tỏ: A= 10n+ 18n- 1 chia hết cho 27( với n là số tự nhiên)
Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
Chứng tỏ A = 10n+18n-1 chia hết cho 27(với n là số tự nhiên)
Câu trả lời hay nhất: Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Chứng tỏ A = 10n+18n -1 chia hết cho 27 ( với n là số tự nhiên)
c/m A = 10n + 18n -1 chia hết cho 27 ( với n là số tự nhiên )