Những câu hỏi liên quan
NB
Xem chi tiết
LD
21 tháng 8 2020 lúc 21:23

A = x2 + 5x + 7 

   = ( x2 + 5x + 25/4 ) + 3/4

   = ( x + 5/2 )2 + 3/4

\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinA = 3/4 <=> x = -5/2

B = 6x - x2 - 5

   = -( x2 - 6x + 9 ) + 4

   = -( x - 3 )2 + 4

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxB = 4 <=> x = 3

C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

   = [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

   = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

   = ( x2 + 5x )2 - 36

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> x = 0 hoặc x = -5

=> MinC = -36 <=> x = 0 hoặc x = -5

Bình luận (0)
 Khách vãng lai đã xóa
NB
22 tháng 8 2020 lúc 13:12

Thank bn.😊😉

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
SY
Xem chi tiết
HT
16 tháng 8 2017 lúc 10:45

nothing. 

Bình luận (0)
ST
16 tháng 8 2017 lúc 13:12

- Với \(x\ge7\) thì \(x-7\ge0\Rightarrow\left|x-7\right|=x-7\), thay vào A ta có:

\(A=x-7+6-x=-1\) (1)

- Với x < 7 thì x - 7 < 0 => |x - 7| = 7 - x, thay vào A ta có:

A = 7 - x + 6 - x = -2x + 13

Vì x < 7 nên -2x > -14 => -2x + 13 > -1 hay A > -1 (2)

Từ (1) và (2) => \(A\ge-1\)

Vậy GTNN của A = -1 khi x \(\ge\) 7

Bình luận (0)
NH
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 7 2019 lúc 12:24

Bình luận (0)
TH
Xem chi tiết
NA
1 tháng 5 2021 lúc 19:36

undefined

Bình luận (0)
CN
Xem chi tiết
EC
19 tháng 9 2016 lúc 17:04

Vì \(\left|x-7\right|\ge0;\left|x-2016\right|\ge0;\left|x-2017\right|\ge0\)

         Suy ra:\(\left|x-7\right|+\left|x+2016\right|+\left|x-2017\right|\ge0\)

      Dấu = xảy ra khi x-7=0;x=7

                                 x+2016=0;x=-2016

                                 x-2017=0;x=2017

Vậy Min A=0 khi x=7;-2016;2017

Bình luận (0)
NN
20 tháng 3 2018 lúc 20:14

A = |x-7|+|x-2016|+|x-2017|

= |x-7|+|x-2016|+|2017-x|

≥ |x-7+2017-x|+|x-2016| = 2017+|x-2016|≥2017

để A nhỏ nhất => A = 2017

=> |x - 2016| = 0 => x = 2016

Bình luận (0)
H24
Xem chi tiết
AH
5 tháng 11 2023 lúc 18:56

Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$

$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)

Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$

----------------------

Áp dụng BĐT Bunhiacopkxy:

$A^2\leq (x+4+6-x)(1+1)=10.2=20$

$\Rightarrow A\leq \sqrt{20}$

Vậy $A_{\max}=\sqrt{20}$

Bình luận (0)