Cho |x|>=2 và |y|>=2 .Chứng minh rằng phương trình xy/(x+y)=2009/2010 vô nghiệm
cho x, y, z là nghiệm bất phương trình \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\xy+yz+zx=4\end{matrix}\right.\)
Chứng minh rằng \(-\dfrac{8}{3}\) ≤ x, y, z ≤ \(\dfrac{8}{3}\)
1)giải phương trình \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
2)cho x,y,z>0 và xy+yz+zx=670 chứng minh
\(P=\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:
Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)
Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)
\(=\left(x+y+z\right)^3.\)(2)
TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
2)Ta có:
\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)
Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)
Áp dụng svac-xơ ta có:
\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)
Chứng minh rằng phương trình sau không có nghiệm nguyên:
\(x^2-y^2=2010\)
\(x^2-y^2=2010\)
Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1
x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 )
mà 2010 chia 4 dư 2 (2)
từ (1) ; (2) Vậy phương trình vô nghiệm
Cho \(x,y\in\left[0;2\right]\). CM phương trình \(x^2+xy+y^2-3x-3y=0\)vô nghiệm
Chứng Minh rằng:\(2009^{2008}+2011^{2010}⋮2010\)
b,Cho x,y,z là các số lớn hơn hoặc bang .CMR
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho |x|>=2 , |y| >= . Chứng minh rằng: a) x+y/xy <=1
b) Phương trình xy/x+y= 2003/2004 vô nghiệm
Cho x^2009 +y^2009 > x^2008 +y^2009.
Chứng minh: x^2010 +y^2010 >= x^2009 + y^2009
giải phương trình nghiệm nguyên
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}+3012=\frac{1}{2}\left(x+y+z\right)\)
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)
câu 1
cho 2(m-1)x +3= 2m-5
tìm m để phương trình trên bậc nhất một ẩn
b) với giá trị nào của m thì thì phương trình trên tương đương với phương trình sau :2x+5 =3(x+2)-1
câu 2 chứng tỏ rằng phương trình mx - 3 = 2m-x-1 luôn nhận x=2 là nghiệm với mọi m
câu 3
cho 2 số x,y khác 0 .chứng minh rằng \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)