Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KL
Xem chi tiết
KL
10 tháng 10 2021 lúc 17:37

giúp mình vs mình đang cần gấp T-T

Bình luận (0)
OY
10 tháng 10 2021 lúc 18:09

Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)

\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)

\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)

\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

Bình luận (1)
NM
Xem chi tiết
DT
23 tháng 9 2023 lúc 17:27

\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)

Bình luận (0)
NM
23 tháng 9 2023 lúc 17:28

dpcp là gì vậy ạ

Bình luận (0)
NM
23 tháng 9 2023 lúc 17:29

dpcm là j vậy ạ

 

Bình luận (0)
VR
Xem chi tiết
H24
Xem chi tiết
VR
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 6 2019 lúc 12:58

5450

Đáp án D

Bình luận (0)
BH
Xem chi tiết
NT
18 tháng 10 2021 lúc 21:24

\(B=1+5+5^2+...+5^6+5^7+5^8\)

\(=31+...+5^6\cdot31\)

\(=31\cdot\left(1+...+5^6\right)⋮31\)

Bình luận (0)
DL
Xem chi tiết
H24
15 tháng 12 2017 lúc 20:11

ta có:A=(1+5^1+5^2)+(5^3+5^4+5^5)+....+(5^57+5^58+5^59)

=31+31*5^3+....+31*5^57

=(1+5^3+....+5^57)*31

=>a chia hết cho 31

Bình luận (0)
DH
15 tháng 12 2017 lúc 20:06

bạn nhóm 4 số liên tiếp vào nhé

Bình luận (0)
H24
15 tháng 12 2017 lúc 20:13

Ta thấy tổng A có tất cả 60 số hạng 

Do 60 chia hết cho 3 nên ta chia tổng A thành 20 nhóm, mỗi nhóm 3 số hạng

\(A=1+5+5^2+...+5^{59}\)

    \(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)

    \(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)

    \(=31+5^3.31+5^6.31+...+5^{57}.31\)

    \(=31\left(1+5^3+5^6+...+5^{57}\right)⋮31\)

Vậy \(A⋮31\)(đpcm)

Bình luận (0)
TA
Xem chi tiết
MH
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Bình luận (0)
NT
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Bình luận (0)