\(5^{x-1}+3\cdot5^{x-1}=1900\)
Tìm x:
a,\(15-\left(5-2x\right)=-4\)
b,\(\left|x-3\right|+1=4\)
c,\(5^x\cdot5^{x+1}\cdot5^{x+2}=10000000\div2^{18}\)
a.15-(5-2x)=-4
\(\Leftrightarrow\)15-5+2x=-4
\(\Leftrightarrow\)2x=-4-15+5
\(\Leftrightarrow\)2x=-14
\(\Leftrightarrow\)x=-7
b.TH1:x-3\(\ge\)0 \(\Rightarrow\)x\(\ge\)3
Ta có \(|\)x-3\(|\)=x-3
PT trên\(\Leftrightarrow\)x-3+1=4
\(\Leftrightarrow\)x=4+3-1
\(\Leftrightarrow\)x=6(nhận)
TH2:x-3<0\(\Leftrightarrow\)x<3
Ta có:\(|\)x-3\(|\)=-x+3
PT trên\(\Leftrightarrow\)-x+3+1=4
-x=4-3-1
x=0(nhận)
Vậy S={0;6}
chỗ 100000 là 1000000000000000000.mười tám chữ số 0
tìm x biết
\(5^{x+1}-2\cdot5^x=375\)
\(9^{x+1}-5\cdot3^{2x}=324\)
\(\left(1-x\right)^5=32\)
\(3\cdot5^{2x+1}-3\cdot25^x=300\)
help me !!! mình đang cần luôn giải hộ mình với
a) \(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125=5^3\)
\(\Rightarrow x=3\)
b) \(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow3^{2\left(x+1\right)}-5.3^{2x}=324\)
\(\Rightarrow3^2\left(3^{x+1}-5.3^x\right)=324\)
\(\Rightarrow9.3^x\left(3-5\right)=324\)
\(\Rightarrow3^x.\left(-2\right)=36\)
\(\Rightarrow3^x=-18=3^2.\left(-2\right)\)(vô lí vì 3x không chia hết cho 2)
c) \(\left(1-x\right)^5=32=2^5\)
\(\Rightarrow1-x=2\)
\(\Rightarrow x=-1\)
d) \(3.5^{2x+1}-3.25^x=300\)
\(\Rightarrow3\left(5^{2x}.5-5^{2x}\right)=300\)
\(\Rightarrow5^{2x}\left(5-1\right)=100\)
\(\Rightarrow5^{2x}.4=100\)
\(\Rightarrow5^{2x}=25=5^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
1. Tìm x
a) \(2^x+5=21\)
b) \(2^x-1+3^2=5^2+2\cdot5\)
c) \(\left(2x-1\right)^3+5=130\)
d) \(5^{2x-3}-2\cdot5^2=5^2\)
e) \(3^{2x+1}-2=3^2+\left[5^2-3\left(2^2-1\right)\right]\)
f) \(\left(7^x-11\right)^3=2^5\cdot5^2+200\)
g) \(2\cdot3^x=10\cdot3^{12}+8\cdot27^4\)
a) \(2^x+5=21\)
\(\Rightarrow2^x=21-5=16\Rightarrow2^x=2^4\)
Vậy x = 4
b) \(2^x-1+3^2=5^2+2.5\)
\(\Rightarrow2^x-1+9=35\)
\(\Rightarrow2^x=35-9+1=27\)
Vậy x không có giá trị
c;d;e;f làm tương tự
tìm x biết
(\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+......+\frac{1}{13\cdot15}\))*(x-1)=3/5*x-7/15
Ta có: \(\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\right)\cdot\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\cdot\left(x-1\right)=\frac{3x}{5}-\frac{7}{15}\)
\(\Leftrightarrow\frac{14}{15}\cdot\left(x-1\right)=\frac{9x-7}{15}\)
\(\Leftrightarrow x-1=\frac{9x-7}{15}:\frac{14}{15}=\frac{9x-7}{14}\)
hay \(x=\frac{9x-7}{14}+1=\frac{9x-7}{14}+\frac{14}{14}=\frac{9x+7}{14}\)
\(\Leftrightarrow x\cdot14=9x+7\)
\(\Leftrightarrow14x-9x-7=0\)
\(\Leftrightarrow5x-7=0\)
\(\Leftrightarrow5x=7\)
hay \(x=\frac{7}{5}\)
Vậy: \(x=\frac{7}{5}\)
Tìm số nguyên x
a) 0100 - (31 - x) = 40
b) 280 - (x - 140) : 35 = 270
c) ( 1900 - 2x) : 35 - 32 = 16
d) 2^2x-1 : 4 = 8^3
e) (x + 2)^5 = 2^10
f) (3x - 4) . (x - 1)^3 = 0
g) (-2x + 1)^2 = 49
h) 1+2+3+...+x = 78
a: =>31-x=60
=>x=-29
b: =>(x-140):35=280-270=10
=>x-140=350
=>x=490
c: =>(1900-2x):35=48
=>1900-2x=1680
=>2x=220
=>x=110
d: =>\(2^{2x-1}=2^9\cdot2=2^{11}\)
=>2x-1=11
=>x=6
e: =>(x+2)^5=4^5
=>x+2=4
=>x=2
f: =>3x-4=0 hoặc x-1=0
=>x=4/3 hoặc x=1
g: =>(2x-1)^2=49
=>2x-1=7 hoặc 2x-1=-7
=>x=-3 hoặc x=4
h: =>x(x+1)/2=78
=>x(x+1)=156
=>x=12
A=\(\dfrac{2^{30}\cdot5^7+3^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)
M=\(\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}\) tại x=7
a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)
b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)
Bài 1: Tìm n
1/4*2/6*3/8*4/10*5/12*.....* 30/62*31/64=2^n
Bài 2: Tính
a) \(\frac{\left(-5\right)^{60}\cdot30^5}{15^5\cdot5^{61}}\)
b)\(2^3+3\cdot\left(\frac{1}{3}\right)^0-2^{-2}\cdot4+\left[\left(-2\right)^3:\frac{1}{2}\right]\cdot8\)
(GỢI Ý CÂU B:\(^{2^{-2}=\frac{1}{2^2}}\)
Bài 3: Tìm x
a)\(^{2^x=16}\)
b)\(^{\left(\frac{x}{13}\right)^2=\frac{49}{169}}\)
c)\(\left(\frac{-1}{5}\right)^x=\left(\frac{-1}{125}\right)^3\cdot x^4=\frac{-16}{625}\)
d)\(^{6^{4-x}=216}\)
Bài 4:Tìm n
a)\(3^n\cdot3^{-2}=3^5\)
b)Tìm x:
1)\(\frac{2^{4-x}}{16^5}=32^6\)
2)\(^{9\cdot5^x=6\cdot5^6+3\cdot5^6}\)
3)\(\frac{2^3}{2^x}=4^5\)
Các bạn giúp mik!!!Mik sắp kiểm tra 45p r
Số tự nhiên x thỏa mãn \(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.....+\frac{1}{x\left(x+2\right)}\)=16/34
Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
=> \(2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{16}{34}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
=> \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
=> \(1-\frac{1}{x+2}=\frac{16}{17}\)
=> \(\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
=> \(x+2=17\)
=> \(x=15\)
=>1/1-1/3+1/3-1/5+1/5-1/7+....+1/x-1/(x+2)=16/34
=>1/1-1/(x+2)=16/34
=>1/(x+2)=1-16/34
=>1/(x+2)=9/17
=>(x+2).9=17
=>(x+2)=17/9
=>x=17/9-2
=>x=-1/9(không là số tự nhiên)
vậy không có số tự nhiên x thoả mãn điều kiện bài toán
bài 1: tìm x thuộc Z
m) (1900-2x):35 - 32 = 16
n) 720:[41 - (2x - 5)] = 2 mũ 3 . 5
o) (x-5).(x mũ 2 - 4) = 0
m , Ta có : \(\left(1900-2.x\right):3-32=16\)
\(\Leftrightarrow\frac{1900-2.x}{35}-32=16\)( Nhân hai vế với 35 )
\(\Leftrightarrow1900-2.x-1120=560\)
\(\Leftrightarrow780-2.x=560\)
\(\Leftrightarrow-2.x=560-780\)
\(\Leftrightarrow\) \(-2.x=-220\)
\(\Rightarrow x=110\)
Vậy x = 110
n, Ta có : \(720:\left[41-\left(2.x-5\right)\right]=2^3.5\)
\(\Leftrightarrow720:\left(41-2.x+5\right)=8.5\)
\(\Leftrightarrow720:\left(46-2.x\right)=40\)
\(\Leftrightarrow\frac{720}{46-2.x}=40\)
\(\Leftrightarrow\frac{720}{2.\left(23-x\right)}=40\)
\(\Leftrightarrow\frac{360}{23-x}\)
\(\Leftrightarrow360=40.\left(23-x\right)\)
\(\Leftrightarrow9=23-x\)
\(\Leftrightarrow x=14\)
Vậy x = 14
o, Ta có : \(\left(x-5\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)
Vậy \(x=5;-2;2\)