Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NP
28 tháng 10 2018 lúc 18:43

\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)

Nên max M là \(\frac{3}{2}\) khi x=y=z=1

\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)

Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3

Bình luận (0)
ZZ
Xem chi tiết
NH
Xem chi tiết
KK
28 tháng 10 2020 lúc 22:21

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
TS
Xem chi tiết
MH
27 tháng 3 2023 lúc 13:25

+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)

\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)

\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)

+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)

\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)

\(=x+y+z+9=10\)

\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)

Bình luận (0)
HH
Xem chi tiết
QT
23 tháng 4 2021 lúc 15:35

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NH
Xem chi tiết
H24
19 tháng 5 2021 lúc 21:34
Min = 1 x = z = 1 và y = 2
Bình luận (0)
 Khách vãng lai đã xóa
DH
22 tháng 5 2021 lúc 10:15

Ta có bất đẳng thức: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\)

Dấu \(=\)xảy ra khi \(a=b\).

Áp dụng ta được: 

\(A=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}=\frac{1}{\left(x+1\right)^2}+\frac{1}{\frac{\left(y+2\right)^2}{2^2}}+\frac{8}{\left(z+3\right)^2}\)

\(\ge\frac{8}{\left(x+1+\frac{y+2}{2}\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}=\frac{256}{\left(2x+y+2z+10\right)^2}\)

Ta có: \(2x+4y+2z\le x^2+1+y^2+4+z^2+1=x^2+y^2+z^2+6\le3y+6\)

\(\Rightarrow2x+y+2z\le6\)

Suy ra \(A\ge\frac{256}{\left(6+10\right)^2}=1\)

Dấu \(=\)xảy ra khi \(x=z=1,y=2\)

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
CA
4 tháng 12 2021 lúc 22:33

sai đề

Bình luận (0)
NL
4 tháng 12 2021 lúc 23:04

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

Bình luận (0)