Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
26 tháng 7 2019 lúc 5:32

Ta có:

4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16

Đẳng thức xảy ra khi và chỉ khi  x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1

Bình luận (0)
TT
Xem chi tiết
AN
14 tháng 6 2017 lúc 9:58

Ta có:

\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)

\(\Rightarrow A\ge16\)

Đấu = xảy ra khi \(t=2z=4x=4y=1\)

Bình luận (0)
TT
15 tháng 6 2017 lúc 12:02

x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :

=\(x+y\ge2\sqrt{xy}\)

=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

nhân các vế tương ứng ta có:

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

mà x+y+z+t=2

\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)

vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)

Bình luận (0)
NQ
Xem chi tiết
LP
2 tháng 4 2018 lúc 14:43

Áp dụng BĐT Cauchy, ta có:

4A = (x + y + z + t)2(x + y + z)(x + y)/xyzt

>= 4(x + y + z)t(x + y + z)(x + y)/xyzt

>= 4(x + y + z)2(x + y)/xyz >= 4 . 4(x + y)z(x + y)/xyz

>= 16(x + y)2/xy >= 16 . 4xy/xy >= 64

=> A >= 16

Bình luận (0)
NC
Xem chi tiết
H24
4 tháng 7 2020 lúc 22:05

https://hoc24.vn/hoi-dap/question/1008948.html?pos=2676645

Bình luận (0)
H24
Xem chi tiết
LA
Xem chi tiết
AO
Xem chi tiết
PD
23 tháng 3 2021 lúc 18:40

Ta có:

\(x+y+z+t=2\)

\(\Rightarrow\left[\left(x+y+z\right)+t\right]^2=4\)

Vì \(x,y,z,t>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

\(\Leftrightarrow\left[\left(x+y+z\right)+t\right]^2\ge4\left(x+y+z\right)t\)

\(\Leftrightarrow4\ge4\left(x+y+z\right)t\)(vì \(\left[\left(x+y+z\right)+t\right]^2=4\))

\(\Leftrightarrow\left(x+y+z\right)t\le1\left(1\right)\)

Ta có: 

\(P=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}=\frac{1.\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)(vì (1))

\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\left(2\right)\)

Đặt \(\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}=A\)thì \(P\ge A\)

Vì \(x,y,z>0\)nên áp dụng bất đẳng thúc Cô-si cho 2 số dương, ta được:

\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge4\left(x+y\right)z\)

Do đó:

\(A=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(\Leftrightarrow A\ge\frac{4\left(x+y\right)^2}{xy}\left(3\right)\)

Từ (2) và (3), ta được:

\(P\ge\frac{4\left(x+y\right)^2}{xy}\left(4\right)\)

Vì \(x,y>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow4\left(x+y\right)^2\ge16xy\)

\(\Leftrightarrow\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\left(5\right)\)

Từ (4) và (5), ta được:

\(P\ge16\)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y>0\\x+y=z>0\\x+y+z=t>0\end{cases}}\)

Mà \(x+y+z+t=2\)nên:

\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}}\)

Vậy \(minP=16\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2};t=1\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
HH
Xem chi tiết
QT
23 tháng 4 2021 lúc 15:35

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa