Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

DT

Cho bốn số thực dương x,y,z,t thỏa mãn x+y+z+t=2 Tìm Min A=\(\frac{(x+y+z)(x+y)}{xyzt}\)

H24
23 tháng 4 2018 lúc 23:22

\(4A=\dfrac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\ge\dfrac{4\left(x+y+z\right).t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\dfrac{4\left(x+y+z\right)^2\left(x+y\right)t}{xyzt}\ge\dfrac{16\left(x+y\right)^2zt}{xyzt}\ge\dfrac{64xyzt}{xyzt}=64\)

\(\Rightarrow A\ge16\)

Dấu = xảy ra tại \(x=y=\dfrac{1}{4};z=\dfrac{1}{2};t=1\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết
AP
Xem chi tiết
TH
Xem chi tiết