Những câu hỏi liên quan
LL
Xem chi tiết
PQ
18 tháng 4 2018 lúc 21:07

Ta có : 

\(M=\frac{1}{x}+\frac{1}{y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}=\frac{10}{xy}\)

Vậy giá trị biểu thức \(M=\frac{10}{xy}\)

Chúc bạn học tốt ~ 

Bình luận (0)
NA
18 tháng 4 2018 lúc 21:04

Đúng thì cho mình nhé

Bình luận (0)
H24
Xem chi tiết
VC
29 tháng 12 2017 lúc 12:20

giả sử x và y đều không chia hết cho 3 

\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)

=> x và y đều phải chi hết cho 3 

tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )

=> x và y đề phải chia hết cho 5 

=> x,y đều chia hết cho 15

mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15

thay vào và tìm min nhé

Bình luận (0)
AM
Xem chi tiết
AM
Xem chi tiết
CV
Xem chi tiết
TN
Xem chi tiết
BY
Xem chi tiết
KB
8 tháng 7 2021 lúc 11:42

Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\)  ( vì x > 0 ) 

Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\) 

Chứng minh được :  \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ... 

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
HN
15 tháng 9 2016 lúc 13:56

Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)

Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)

Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)

Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên

 

Bình luận (0)
SG
15 tháng 9 2016 lúc 13:57

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(A>\frac{x+y+z}{x+y+z}\)

\(A>1\left(1\right)\)

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)

\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)

\(A< 2\left(2\right)\)

Từ (1) và (2) => 1 < A < 2

=> A không là số nguyên (đpcm)

 

Bình luận (0)
IM
15 tháng 9 2016 lúc 14:03

Ta có :

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(\Rightarrow A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)

\(\Rightarrow A=1-\frac{y}{x+y}+1-\frac{z}{y+z}+1-\frac{x}{z+x}\)

\(\Rightarrow A=3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)\)

Mặt khác vì A nguyên dương

\(\Rightarrow\begin{cases}\frac{x}{x+z}>\frac{x}{x+y+z}\\\frac{y}{y+x}>\frac{y}{x+y+z}\\\frac{z}{z+y}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>1\) 

\(\Rightarrow-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< -1\)

\(\Rightarrow3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< 2\left(1\right)\) 

Mà \(\begin{cases}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{x+z}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow1< A< 2\)

=> A không phải là số nguyên

Bình luận (0)
KT
Xem chi tiết
DP
10 tháng 2 2019 lúc 19:22

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Thay vào M ta có 

\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

P/s : hỏi từng câu thôi 

Bình luận (0)
KT
10 tháng 2 2019 lúc 19:26

Tại bận -.-

Bình luận (0)
H24
10 tháng 2 2019 lúc 19:30

\(\frac{ab}{a+b}=\frac{bc}{b+c}\)\(\Leftrightarrow ab.\left(b+c\right)=bc.\left(a+b\right)\Leftrightarrow ab^2+abc=b^2c+abc\Leftrightarrow ab^2=b^2c\Leftrightarrow a=c\left(b\ne0\right)\)(1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Leftrightarrow bc.\left(c+a\right)=ca.\left(b+c\right)\Leftrightarrow bc^2+abc=c^2a+abc\Leftrightarrow b=a\left(c\ne0\right)\)(2)

Từ (1) và (2) => a=b=c

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=0\)

                                    -------------------------------------------------ngăn cách bài--------------------------------------------

ta có: \(VT=\frac{6}{\left(x-1\right)^2+2}\le3\)(--)

dấu = xảy ra khi x-1=0

=> x=1

\(\left|y-1\right|+\left|y-3\right|=\left|-y+1\right|=\left|y-3\right|\ge\left|-y+1+y-3\right|=2\)(2)

\(\left|y-2\right|\ge0\)(1)

Từ (1) và (2) \(\Rightarrow VP=\left|y-1\right|+\left|y-3\right|+\left|y-2\right|+1\ge3\)(3)

dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra

\(\hept{\begin{cases}\left(-y+1\right).\left(y-3\right)\ge0\\y-2=0\end{cases}\Rightarrow y=2}\)

Mà VT=VP => \(\frac{6}{\left(x-1\right)^2+3}=\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=3\)

Vậy \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)

Bình luận (0)
TT
Xem chi tiết
TN
1 tháng 11 2016 lúc 19:33

Ta có: \(x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow B=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)

\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\)

Áp dụng Bđt Cô-si ta có:

\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)

\(\Rightarrow B\ge4+2\sqrt{3}\)

Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)

\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)

Bình luận (0)
AN
1 tháng 11 2016 lúc 20:17

Làm sai rồi bạn

Bình luận (0)
TN
1 tháng 11 2016 lúc 21:28

chỗ nào

Bình luận (0)