Biết a+b=9. Kết quả của phép tính \(\overline{0,a\left(b\right)}+\overline{0,b\left(a\right)}\) là
Thay các chữ thành các chữ số
a, 1: \(\overline{0,abc}\) = a+b+c
b, \(\overline{0,x\left(y\right)}\) - \(\overline{0,y\left(x\right)}\) = 8 . \(\overline{0,0\left(1\right)}\) biết rằng x+y = 9
a) \(1:\overline{0,abc}=a+b+c\)
\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)
\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)
Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125
Cho dãy tỉ số \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)( với a,b,c\(\ne\)0 ) .Tính \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
+) Nếu \(a+b+c=0\) :
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(b+c=-a\)
\(\Rightarrow\)\(a+c=-b\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
+) Nếu \(a+b+c\ne0\) :
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(a=b=c\)
Suy ra :
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
Bài 1 : Tìm a,b,c biết :
a) Cho \(\dfrac{\overline{ab}+\overline{bc}}{a+b}=\dfrac{\overline{bc}+\overline{ca}}{b+c}=\dfrac{\overline{ca}+\overline{ab}}{c+a}\left(a,b,c\ne0\right)\). Tính \(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
b) Cho a,b,c là các số thực khác 0 sao cho : \(\dfrac{2x+2y-z}{z}=\dfrac{2x-y+2z}{y}=\dfrac{x+2y+2z}{x}\). Tính giá trị của biểu thức \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8.x.y.z}\)
so sánh các số sau: a) 0,(26) và 0,216
b) \(\overline{0,\left(ab\right)}\) ; \(\overline{0,a\left(ba\right)}\) và \(\overline{0,\left(abab\right)}\)
A)0.(26)>0.216
B)0.(ab),0.a(ba) = 0.(abab)
9. Biết x + y = 9. Tính \(\overline{0,x\left(y\right)}\) + \(\overline{0,y\left(x\right)}\).
Gíup mình với mình đang gấp!
Cảm ơn các bạn!
Lời giải:
\(\overline{0,x(y)}+\overline{0,y(x)}=\overline{0,x}+\overline{0,y}+\overline{0,0(y)}+\overline{0,0(x)}\)
\(=(x+y).0,1+\frac{y}{90}+\frac{x}{90}=(x+y).0,1+(x+y).\frac{1}{90}=9.0,1+9.\frac{1}{90}=1\)
Cho hàm f: N ➝ N
biết: f\(\left(\overline{ab}\right)=a.b\)
a) Tìm \(\overline{ab}\) biết \(f\left(\overline{ab}\right)=6\)
b) \(CMR:f\left(\overline{aa}\right)+f\left(\overline{ab}\right)+f\left(\overline{ba}\right)+f\left(\overline{bb}\right)=\left(a+b\right)\)
Tìm x,y biết:
x+y=9 \(\overline{xy}+\overline{yx}=99\) và \(\overline{0,xy\left(x\right)}+\overline{0,yx\left(y\right)}=0,4\left(5\right)\)
1.
a) \(A=\frac{\left(\frac{2018}{1}-1\right)\left(\frac{2018}{2}-1\right)...\left(\frac{2018}{1000}-1\right)}{\left(\frac{1000}{1}+1\right)\left(\frac{1000}{2}+1\right)...\left(\frac{1000}{1007}+1\right)}\)
b) Tìm x biết 378% của x kém A 55 đơn vị.
2. Tìm a, b, c sao cho : \(\frac{\overline{ab}.\overline{bc}.\overline{ca}}{\overline{ab}+\overline{bc}+\overline{ca}}=\frac{3321}{11}\)
Bài 1: Tìm \(\overline{abcde}\), biết
1) \(\sqrt{\overline{abcde}}\) = 5e + 1
2) \(\sqrt{\overline{abcde}}\) = \(\left(ab\right)^3\)
Bài 2: Cho a, b>0: \(a^{2012}\)+ \(b^{2012}\) = \(a^{2013}\)+\(b^{2013}\)=\(a^{2014}\)+\(b^{2014}\)
Bài 3: Tìm a, b, c: a.( a + b + c ) = \(-\dfrac{1}{24}\)
c.( a + b + c ) = \(-\dfrac{1}{72}\)
b.( a + b + c ) = \(\dfrac{1}{16}\)
(cứu mih với ạ uhuhuhu)
Bài 3.
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)
Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)
Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)
Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).
Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)
\(\Rightarrow c=\pm\dfrac{1}{6}\).
Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)
Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)