tìm min B=\(\dfrac{x^2-2x+2016}{x^2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm min B biết \(B=\dfrac{x+1}{2x}.\dfrac{2x^2}{x^2+x+1}\)
\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)
\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)
\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)
Tìm Min = x^2 - 2x + 2016
Tìm Max = -x^2 +2x + 2016
x^2-2x+2016=(x-1)^2+2015>=2015
=> min của x^2-2x+2016=2015 khi x =1
-x^2+2x+2016=-(x-1)^2+2017=<2017
=> max -x^2+2x+2016 =2017 khi x=1
1. Tìm Min
a, 3x^2 + 5x
b, (2x-1)^2 - x^2
2.Cho x+y=2. Tìm Min A = x^2+y^2
3. tìm Min A = x^2 + 6y^2 + 4xy - 2x - 8y + 2016
Tìm Min: B=x^2-2x+2016
x^2-2x+1+2014>=2014 min B=2014 khi x=1
min của B = 2016
= 0^2-2x0+2016
= 0-0+2016
khi x = 0 (vì min: nhỏ nhất)
ủng hộ nhé
Tìm min B=\(\frac{x^2-2x+2016}{x^2}\)
x khac 0
Bx^2=x^2-2x+2016
(1-B)x^2-2x+2016=0
\(\Rightarrow\Delta=1-4.\left(1-B\right).2016\ge0\Rightarrow1-4.2016+4.2016B\ge0\)
\(B\ge\frac{4.2016-1}{4.2016}=1-\frac{1}{4.2016}\)
GTNN(B)=1-1/(4.2016)
bắt hết các loại gió mùa
Tìm min B= \(\frac{x^2-2x+2016}{x^2}\)
Ta có:
\(B=\frac{x^2-2x+2016}{x^2}\Rightarrow2016B=\frac{2015x^2+\left(x^2-2.2016x+2016^2\right)}{x^2}=2015+\frac{\left(x-2016\right)^2}{x^2}\ge2015\)
Dấu "=" xảy ra khi \(\frac{\left(x-2016\right)^2}{x^2}=0\Rightarrow x=2016\)
\(\Rightarrow2016B_{min}=2015\Rightarrow B_{min}=\frac{2015}{2016}\) khi \(x=2016\)
Tìm min B= \(\frac{x^2-2x+2016}{x^2}\)
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
2,Tìm Min: A=\(\dfrac{3x^2-10x+3}{x^2-2x+4}\) B=\(\dfrac{x-1}{x^2-4x+4}\) C=\(\dfrac{x^2-x-1}{x^2-4x+4}\)