Những câu hỏi liên quan
CH
Xem chi tiết
NL
8 tháng 1 2024 lúc 13:26

a.

\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)

Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)

\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)

Hay \(2^{2024}\) chia 7 dư 4

b.

\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)

Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)

\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)

Hay \(5^{70}+7^{50}\) chia 12 dư 2

Bình luận (0)
NL
8 tháng 1 2024 lúc 13:34

c.

\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)

Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)

\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)

Hay \(3^{2005}+4^{2005}\) chia 11 dư 2

d.

\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)

Hay \(1044^{205}\) chia 7 dư 1

e.

\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)

Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)

\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)

hay \(3^{2003}\) chia 13 dư 9

Bình luận (0)
NV
Xem chi tiết
H24
3 tháng 3 2016 lúc 20:31

A chia 7 dư 6=> A-6 chia hết cho 7=>A +36 chia hết cho 7(1)

A chia 13 dư 3=>A-3 chia hết cho 13=> A +36 chia hết cho 13(2)

Từ(1)(2)=>A+36 chia hết cho 7 và 13=>A thuộc bội chung của 7 và 13

Mà UCLN(7;13)=1 => A+36 thôucj bội của 7x13=91=>Achia 91 dư :91-36=55

Bình luận (0)
TV
Xem chi tiết
H24
14 tháng 3 2018 lúc 12:30

gọi số tự nhiên đó là a.

theo bài ra ta có :

a = 7t + 5 (t thuộc N)

a=13k + 4 (k thuộc N)

do đó:

a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)

a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)

Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91

Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82

Bình luận (0)
PM
Xem chi tiết
HL
Xem chi tiết
PH
16 tháng 9 2016 lúc 13:43

\(3^{2016}\equiv1^{2016}\)

mà \(1^{2016}\)chia 13 dư 1

nên 3^2016 : 13 dư 1

Bình luận (0)
ND
Xem chi tiết
LD
Xem chi tiết
LD
Xem chi tiết
PD
Xem chi tiết
HC
Xem chi tiết
NT
5 tháng 7 2023 lúc 20:11

a: =>(x-1)^2=1 và 5y^2=5

=>(x-1)^2=1 và y^2=1

=>\(y\in\left\{1;-1\right\};x\in\left\{2;0\right\}\)

b: Gọi số cần tìm là x

x chia 11 dư 4 nên x-4 chia hết cho 11

=>x+18 chia hết cho 11

x chia 13 dư 8

=>x-8 chia hết cho 13

=>x+18 chia hết cho 13

=>x+18 chia hết cho 143

=>x chia 143 dư 18

Bình luận (0)